www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Bedingung für Extremstellen
Bedingung für Extremstellen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingung für Extremstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:00 So 05.03.2006
Autor: achmetmuxamet

Aufgabe
Warum sprechen Mathematiker davon, dass f`(xe)=0 eine sog.  notwendige Bedingung und f``(xe)  [mm] \not= [/mm] 0 die sog. hinreichende Bedingung für eine Extremstelle der Ausgangsfunktion f(x) in xe sind?

Hallo,

das mit der notwendigen Bedingung ist ja so da die erste Ableitung die Steigung des normalen Graphen angibt und wenn die 0 ist dann hat der Graph keine Steigung und ist demzufolge ein Hoch/Tiefpunkt

aber jetzt weiß ich nicht wieso man bei dem Anderen von heiner hinreichenden Bedingung spricht, da wenn f``(x) ungleich null ist dies ja zeigt ob der graph fallend oder steigend ist (in der 1 Abl)

Mfg
Patrick


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bedingung für Extremstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 So 05.03.2006
Autor: Yuma

Hallo Patrick,

> Warum sprechen Mathematiker davon, dass f'(xe)=0 eine sog.  
> notwendige Bedingung und f''(xe)  [mm]\not=[/mm] 0 die sog.
> hinreichende Bedingung für eine Extremstelle der
> Ausgangsfunktion f(x) in xe sind?

Wenn [mm] $x_{e}$ [/mm] eine Extremstelle von $f$ ist, dann ist [mm] $f'(x_{e})=0$. [/mm]
Dies ist eine notwendige Bedingung für das Vorliegen eines Extrempunktes, das heißt, wenn [mm] $f'(x_{p})\not=0$ [/mm] ist, dann ist [mm] $x_{p}$ [/mm] keine Extremstelle, denn dazu wäre notwendig, dass [mm] $f'(x_{p})=0$ [/mm] ist.
Umgekehrt gilt das nicht: Wenn [mm] $f'(x_{p})=0$ [/mm] für irgendeine Stelle [mm] $x_{p}$ [/mm] gilt, heißt das noch lange nicht, dass [mm] x_{p} [/mm] eine Extremstelle ist.

Beispiel: Betrachte die Funktion [mm] $f(x)=x^{3}$. [/mm]
An der Stelle [mm] $x_{p}=0$ [/mm] liegt KEIN Extrempunkt vor, obwohl $f'(0)=0$ ist.

> das mit der notwendigen Bedingung ist ja so da die erste
> Ableitung die Steigung des normalen Graphen angibt und wenn
> die 0 ist dann hat der Graph keine Steigung und ist
> demzufolge ein Hoch/Tiefpunkt

Nein, das kann man nicht sagen, siehe obiges Beispiel [mm] $f(x)=x^{3}$. [/mm]

Mit der notwendigen Bedingung (also dem Suchen von Nullstellen der ersten Ableitung) verschafft man sich sozusagen die möglichen Extremstellen. Um zu zeigen, dass sie wirklich Extremstellen sind, setzt man sie in die zweite Ableitung ein und prüft, ob das Ergebnis ungleich Null ist. Ist das der Fall, so handelt es sich tatsächlich um eine Extremstelle.
Man spricht deshalb von beiden Bedingungen zusammen als notwendig und hinreichend für das Vorliegen eines Extrempunktes, denn man kann sagen: Wenn beide Bedingungen erfüllt sind, dann liegt ein Extrempunkt vor.

Letzte Bemerkung: Trotzdem kann ein Extrempunkt auch dann vorliegen, wenn die hinreichende Bedingung nicht erfüllt ist:
Betrachte mal [mm] $f(x)=x^{10}$. [/mm] An der Stelle [mm] $x_{e}=0$ [/mm] liegt ein Tiefpunkt vor, obwohl $f''(0)=0$. Kannst du dir jetzt selbst erklären, was der Begriff hinreichend bedeutet?

MFG,
Yuma

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de