www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Begrenzte Netze in LCVS
Begrenzte Netze in LCVS < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Begrenzte Netze in LCVS: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:58 Mi 15.02.2012
Autor: GodspeedYou

Ein Netz in einem lokalkonvexen Vektorraum ist nicht unbededingt beschränkt, was das hantieren mit Netzen recht schwierig macht.
Meine Frage ist, wann Konvergenzerhaltung von beschränkten Netzen bereits ausreicht, um Stetigkeit von Funktionen mit einem LCVS als Definitionsbereich zu charakterisieren.

Genauer:
Sei E ein lokalkonvexer Vektorraum (=:LCVS, d.h. Hausdorff'sch und mit einer Null-Umgebungsbasis bestehend aus absolutkonvexen Mengen).

Eine Abbildung f:E->X (X topologischer Raum) heiße beschränkt-stetig, falls für jedes beschränkte konvergente Netz  [mm] (x_{\alpha})_{\alpha \in A} [/mm] -> x gilt, dass das Bildnetz [mm] f(x_{alpha})_{\alpha \in A} [/mm] gegen f(x) konvergiert.

Äquivalent zu beschränkt stetig ist die Aussage, dass die Einschränkung von f auf eine beliebige beschränkte Menge stetig ist.

Um das hervorzuheben, X ist ein beliebiger topologischer Raum, und f eine beliebige Abbildung (d.h. nicht unbedingt linear).

Eine LCVS  E heiße vom Typ BS, falls für jeden top Raum X, jede beschränkt-stetige Abbildung f:E->X bereits stetig ist.

Beispiele für BS-Räume sind dann natürlich alle sequentiellen LCVS (d.h. Räume in denen Folgenstetigkeit äquivalent  zur Stetigkeit ist), insbes. metrisierbare LCVS und Silva-Räume.

Meine Frage: Gibt es eine Beschreibung der Eigenschaft BS anhand von bekannten Kategorien/Eigenschaften von LCVS?
Ist die Klasse der BS-Räume größer als die der sequentiellen?
Gibt es einen Zusammenhang zu bornologischen Räumen?

Danke für alle Antworten.


Ich habe die Frage in keinem anderen Forum gestellt.








        
Bezug
Begrenzte Netze in LCVS: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Fr 24.02.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de