www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Begrifflichkeiten unklar
Begrifflichkeiten unklar < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Begrifflichkeiten unklar: Fragen über Fragen (korrigiert
Status: (Frage) beantwortet Status 
Datum: 21:05 Mo 13.12.2004
Autor: dancingestrella

Hallo...

tja so kurz vor den Weihnachts"ferien" stelle ich fest, dass ich doch einiges nicht verstehe und irgendwie wird das "einiges" immer größer....  in der Uni traue ich mich einfach nicht so elementare Fragen zu stellen.
Vielleicht besteht jadoch noch Hoffnung.

Also wir hatten da mal so einen Hlfssatz:

Sei V ein K-Vektorraum und [mm] (v_{j})_{j\inI} [/mm] eine Familie von Vektoren aus V. Dann sind gleichbedeutend:
a) [mm] (v_{j})_{j\inI} [/mm] ist linear unabhängig.
b) Jeder Vekto v [mm] \in span(v_{j})_{j\inI} [/mm] lässt sich eindeutig als Linearkombination von [mm] (v_{j})_{j\inI} [/mm] schreiben.

Beweis:
[mm] \neg [/mm] a)  [mm] \Rightarrow \neg [/mm] b)
Ist [mm] (v_{j})_{j\inI} [/mm] linear abhängig, so hat der Nullvektor zwei verschiedene Darstellungen:
0 =  [mm] \summe_{j\inI}^{} 0v_{j} [/mm] und 0 =  [mm] \summe_{j\inI}^{} \lambda_{j}v_{j}, [/mm] wobei nicht alle [mm] \lambda_{j} [/mm] = 0 sind.

Meine Fragen:
1.) Aus der Analysis kenne ich die schreibweise [mm] (a_{n})_{n\in\IN} [/mm] bei den Folgen; dafür kann man auch [mm] (a_{1}, a_{2}....) [/mm] schreiben. Wenn ich das jetzt auf diesen Sachverhalt übertrage, kann ich dann sagen, dass meine Folgenglieder zu Vektoren werden, die dann noch ihre Komponenten haben. Also zum Bespiel:
[mm] (v_{j})_{j \in I} [/mm] = ( (1,2,3), (4,7,9)) ???
2.) Zum Beweis: Mir ist unklar, wieso man diese Beweisführung "aus nicht a) folgt nicht b)" machen kann. Wieso? Kann mir das jemand anhand eines Beispiels deutlich machen?
3.) Wieso hat, wenn [mm] (v_{j})_{j\inI} [/mm] linear abhängig ist, 0 zwei Darstellungen? Die erste Darstellung flogt ja direkt aus der Fefinition von der Linearen Unabhängigkeit von Vektoren, aber die zweite? Wie kommt man auf die zweite? --- VERGESSEN, ich sehe es doch!
4.) In irgendeiner weise muss da ja jetzt "nicht b)" stehen, wo? Ich sehe das nicht... ist "nicht b)" nicht dass es zwei Darstellungen gibt, dann sehe ich es doch!?!!

ach, ja es gibt noch sehr viel zu tun...

viele Grüße, dancingestrella


        
Bezug
Begrifflichkeiten unklar: Antwort
Status: (Antwort) fertig Status 
Datum: 09:35 Di 14.12.2004
Autor: Hexe

Also zunächst mal das is alles gar net so schlimm wie es aussieht :-)
Zu Frage 1: ja genau jedes Mitglied der Familie ist ein Vektor der selber noch Komponenten hat.
Frage 2: So Beweislehre nemen wir mal als Beispiel a)es regnet und b) die Strasse ist nass
Wenn ich jetzt sagen will aus a) folgt immer b) dann muss auch aus [mm] \neg [/mm] b immer [mm] \neg [/mm] a folgen. Wenn immer wenn es regnet die Strasse nass ist, dann muss folglich es nicht regnen wenn sie trocken ist.
Frage 3: is geklärt
Frage 4: Da hast du wieder recht. Es gibt 2 Darstellungen also ist es nicht eindeutig also [mm] \neg [/mm] b)

Bezug
                
Bezug
Begrifflichkeiten unklar: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:14 Di 14.12.2004
Autor: dancingestrella

hej hexe!

danke, das beispiel für die beweisführung ist einleuchtend :-) genau sowas brauchte ich...
und die anderen Sachen waren ja dann wirklich, nachdem ich länger (viel länger) drüber nachgedacht hatte, eigentlich ganz sinnvoll.

bis demnächst,
dancingestrella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de