www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Begriffsklärung Konvergenzen
Begriffsklärung Konvergenzen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Begriffsklärung Konvergenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:26 Fr 13.03.2009
Autor: Markus80

Hi Matheteam,

unsere Definition für P-fast-sichere Konvergenz lautet:
[mm] \limes_{n\rightarrow\infty} P(\bigcup_{m=n}^{\infty}{|Xm-X|\ge\varepsilon}) [/mm] = 0

und die für stochastische Konvergenz:
[mm] \limes_{n\rightarrow\infty} P({|Xn-X|\ge\varepsilon}) [/mm] = 0

Jetzt lautet meine Frage, stimmen die beiden folgenden Interpretationen?

zu P-fast-sichere Konvergenz: Bei dieser Konvergenzart enthält jede Folge von konvergenten Zufallsvariablen wiederum eine Folge von konvergenten Zufallsvariablen.

zu stochastischer Konvergenz: Bei dieser Konvergenz konvergiert nur die gesamte Folge der Zufallsvariablen.

Danke schonmal fürs Antworten!
Viele Grüße,
Markus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Begriffsklärung Konvergenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Sa 14.03.2009
Autor: steffenhst

Hallo,

> Hi Matheteam,
>  
> unsere Definition für P-fast-sichere Konvergenz lautet:
>  [mm]\limes_{n\rightarrow\infty} P(\bigcup_{m=n}^{\infty}{|Xm-X|\ge\varepsilon})[/mm]
> = 0
>  
> und die für stochastische Konvergenz:
>  [mm]\limes_{n\rightarrow\infty} P({|Xn-X|\ge\varepsilon})[/mm] = 0
>  
> Jetzt lautet meine Frage, stimmen die beiden folgenden
> Interpretationen?
>  
> zu P-fast-sichere Konvergenz: Bei dieser Konvergenzart
> enthält jede Folge von konvergenten Zufallsvariablen
> wiederum eine Folge von konvergenten Zufallsvariablen.

Verstehe ich nicht, was du damit meinst (willst du auf Teilfolgen hinaus?). Die fast-sichere Konvergenz kann man auch so schreiben [mm] \limes_{n\rightarrow\infty} X_n [/mm] = X p-f.ü., d.h. du kannst die fast-sichere Konvergenz als punktweise Konvergenz von Funktionsfolgen auffassen, wobei die Menge der Punkte, in denen die Folge nicht konvergiert vom Maß Null ist (deshalb Konvergenz "P"-f.ü.. Betrachte folgende Funktion:

[mm] X_n [/mm] = [mm] w^{n} [/mm] mit w [mm] \in [/mm] [0,1] auf der Borelschen sigma-Algebra [mm] \mathcal{B}_|[0,1] [/mm] mit dem Lebsque-Maß. Dann Konvergiert [mm] X_n [/mm] P-f.ü. gegen X = 0. D.h. [mm] X_n [/mm] konvergiert in fast jedem Punkt gegen X = 0 und die Punkte für die das nicht so ist (hier {1}), sind vom Maß 0 (es gilt: [mm] \lambda [/mm] ({1}) = 0).  
  

> zu stochastischer Konvergenz: Bei dieser Konvergenz
> konvergiert nur die gesamte Folge der Zufallsvariablen.

Im Gegenteil: Bei stochatsischer Konvergenz muss nicht eine richtige Konvergenz von [mm] X_n [/mm] gegen X vorliegen. Vielmehr konvergiert die Wahrscheinlichkeit der Ereignisse w mit [mm] |X_n [/mm] (w) - X (w)| > [mm] \epsilon [/mm] gegen Null (hier konvergieren also die Werte der W_Maße).

Grüße, Steffen

Bezug
                
Bezug
Begriffsklärung Konvergenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Sa 14.03.2009
Autor: Markus80

Ja, bei der p-fast-sicheren Konvergenz möchte ich auf die Teilfolgen hinaus. Danke allerdings für deinen geschilderten Aspekt der punktweisen Konvergenz von Funktionsfolgen bez. der fast-sicheren Konvergenz. Auch das Beispiel ist fein!

Das mit der stochastischen Konvergenz hingegen hatte ich dann wohl missverstanden, danke für die Klärung.

Wäre nur noch das mit der p-fast-sicheren Konvergenz von Teilfolgen zu klären!? Also, das was ich mit der Vereinigung [mm] \limes_{n\rightarrow\infty} P(\bigcup_{m=n}^{\infty}{|Xm-X|\ge\varepsilon}) [/mm] meinte, ist in meinem Skript ein Lemma, welches deiner dargestellten Definition "fast-sichere Konvergenz" folgt, und das möchte ich halt verstehen. Kann das eigentlich auch so formuliert werden (siehe Vereinigungssymbol unten) ?
[mm] \limes_{n\rightarrow\infty} P(\bigcup_{m\ge n}^{\infty}{|Xm-X|\ge\varepsilon}) [/mm]

Viele Grüße,
Markus

Bezug
                        
Bezug
Begriffsklärung Konvergenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Mo 16.03.2009
Autor: steffenhst

Hallo,


> und das möchte ich halt verstehen. Kann das eigentlich auch
> so formuliert werden (siehe Vereinigungssymbol unten) ?
> [mm]\limes_{n\rightarrow\infty} P(\bigcup_{m\ge n}^{\infty}{|Xm-X|\ge\varepsilon})[/mm]

Ja, so kann man es formulieren. Es gibt auch ein Cauchy-Kriterium für P-f.ü. Konvergenz mit:

[mm] \limes_{n\rightarrow\infty} P(\bigcup_{m\ge n}^{\infty}{|X_m-X_n|\ge\varepsilon}) [/mm] = 0

Ich denke mal, dass es das ist was du suchst.
Viele Grüße, Steffen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de