Beispiel finden < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe 1 | Geben Sie ein Beispiel einer Borel-messbaren Funktion f: [mm] \mathbb{R} \rightarrow \mathbb{R}, [/mm] sodass [mm] f|_{[0,1]} [/mm] nicht Riemann-integrierbar ist. |
Aufgabe 2 | Sei für eine (nicht notwendigerweise Lebesgue-messbare) Funktion f: [mm] \mathbb{R} \rightarrow \mathbb{\overline{R}}_{ \ge 0}
[/mm]
[mm] I_{\*}(f):=sup{ \sum_{j=1}^N a_j \mu(A_j) : A_j \in \mathcal{L} (\mathbb{R}) und 0 \le \sum_{j=1}^N a_j \chi_{A_j} },
[/mm]
wo [mm] \mathcal{L} (\mathbb{R}) [/mm] die Lebesgue-Algebra und [mm] \mu [/mm] das Lebesgue-Maß bezeichnet.
a) Geben Sie ein Beispiel einer Funktion f: [mm] \mathbb{R} \rightarrow \mathbb{\overline{R}}_{ \ge 0}, [/mm] so dass [mm] I_{\*}(f)=0 [/mm] gilt und {x [mm] \in [/mm] X : f(x) [mm] \not= [/mm] 0} keine Lebesgue-Nullmenge ist.
b) Geben Sie ein Beispiel für Funktionen f,g: [mm] \mathbb{R} \rightarrow \mathbb{\overline{R}}_{ \ge 0} [/mm] mit [mm] I_{\*}(f+g) \not= I_{\*}(f)+I_{\*}(g). [/mm] |
Abend,
fallen da vielleicht jemandem Beispiele ein oder hat jemand Tipps wie ich Beispiele finde? Ich komme da irgendwie nicht drauf.
Danke
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:11 Do 12.12.2013 | Autor: | fred97 |
> Geben Sie ein Beispiel einer Borel-messbaren Funktion f:
> [mm]\mathbb{R} \rightarrow \mathbb{R},[/mm] sodass [mm]f|_{[0,1]}[/mm] nicht
> Riemann-integrierbar ist.
Denk mal an die charakteristische Funktion von [mm] \IQ.
[/mm]
> Sei für eine (nicht notwendigerweise Lebesgue-messbare)
> Funktion f: [mm]\mathbb{R} \rightarrow \mathbb{\overline{R}}_{ \ge 0}[/mm]
>
> [mm]I_{\*}(f):=sup{ \sum_{j=1}^N a_j \mu(A_j) : A_j \in \mathcal{L} (\mathbb{R}) und 0 \le \sum_{j=1}^N a_j \chi_{A_j} },[/mm]
Da srimmt was nicht. Rechts kommt kein f vor !!
FRED
>
> wo [mm]\mathcal{L} (\mathbb{R})[/mm] die Lebesgue-Algebra und [mm]\mu[/mm]
> das Lebesgue-Maß bezeichnet.
> a) Geben Sie ein Beispiel einer Funktion f: [mm]\mathbb{R} \rightarrow \mathbb{\overline{R}}_{ \ge 0},[/mm]
> so dass [mm]I_{\*}(f)=0[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
gilt und {x [mm]\in[/mm] X : f(x) [mm]\not=[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
0} keine
> Lebesgue-Nullmenge ist.
> b) Geben Sie ein Beispiel für Funktionen f,g: [mm]\mathbb{R} \rightarrow \mathbb{\overline{R}}_{ \ge 0}[/mm]
> mit [mm]I_{\*}(f+g) \not= I_{\*}(f)+I_{\*}(g).[/mm]
> Abend,
>
> fallen da vielleicht jemandem Beispiele ein oder hat jemand
> Tipps wie ich Beispiele finde? Ich komme da irgendwie nicht
> drauf.
>
> Danke
|
|
|
|
|
Hallo Fred,
danke schon mal für deine Antwort.
> > [mm]I_{\*}(f):=sup{ \sum_{j=1}^N a_j \mu(A_j) : A_j \in \mathcal{L} (\mathbb{R}) und 0 \le \sum_{j=1}^N a_j \chi_{A_j} },[/mm]
>
>
> Da srimmt was nicht. Rechts kommt kein f vor !!
>
Ooh, hast recht, da habe ich was vergessen.
Richtig heißt es:
[mm] I_{\*}(f):=sup\{ \sum_{j=1}^N a_j \mu(A_j) : A_j \in \mathcal{L} (\mathbb{R})\ und\ 0 \le \sum_{j=1}^N a_j \chi_{A_j} \le f \}
[/mm]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:20 Di 17.12.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|