www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Bekomme Bruch nich vereinfacht
Bekomme Bruch nich vereinfacht < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bekomme Bruch nich vereinfacht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 So 02.07.2006
Autor: frkbtch

Aufgabe
[mm] \bruch{x^{3/2}}{4\wurzel{\wurzel{x}+1}}+2\wurzel{\wurzel{x+1}+1}x [/mm]

Hallo,

das ist mein erster Besuch und mein erster Post in diesem Forum. Bin ziemlich beeindruckt von den Features und dem Unfang hier. Und auch wenns zuerst ziemlich durcheinander war, so hab ichs jetzt wohl geschafft. Bitte um Nachsicht, wenn irgendwas nicht stimmt.

Ich habe diese Aufgabe bis dahin lösen können, allerdings kann ich den letzten Schritt der mir vorliegenden Lösung nicht nachvollziehen. Und zwar steht da: "Vereinfache unter der Vorrausetzung, dass alle Variablen positiv sind." Habe natürlich etwas umhergerechnet, aber komme nichtmal annäherend zur Lösung. So soll es aussehen:

[mm] \bruch{(9\wurzel{x}+8)x}{4\wurzel{\wurzel{x}+1}} [/mm]

Wäre sehr happy, wenn mir jemand auf die Sprünge helfen könnte!

Schönen Gruß,
frkbtch

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bekomme Bruch nich vereinfacht: hmm....
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:53 So 02.07.2006
Autor: Fulla

hi frkbtch!

also irgendwas stimmt da nicht! du hast dich wohl irgendwo vertippt, weil der term in der aufgabe und deine angegebene lösung sind nicht gleich!

vielleicht schreibst du auch mal deinen bisherigen lösungsweg hierrein...

lieben gruß,
Fulla

Bezug
                
Bezug
Bekomme Bruch nich vereinfacht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:03 Mo 03.07.2006
Autor: frkbtch

Hi und erstmal ein schönes DANKE für die Antwort!

Doch, müsste stimmen, ich kann keinen Fehler feststellen.
Achtung: Das letzte x in der Aufgabe steht nicht mehr unter der Wurzel. Ansonsten habe ich dazwischen keine anderen Rechenschritte. Es geht dabei um eine Ableitung, wobei mir nur noch jener letzter Schritt fehlt.
Es wird dir zwar wohl nichts helfen, aber so sollte es eigentlich aussehen:

http://stuff.jessix.de/pic/bruch.gif

Danke!

Bezug
        
Bezug
Bekomme Bruch nich vereinfacht: Antwort
Status: (Antwort) fertig Status 
Datum: 00:49 Mo 03.07.2006
Autor: droller

Wenn das x ausserhalb steht geht es so:

[mm] \bruch{x^{3/2}}{4\wurzel{\wurzel{x}+1}}+2\wurzel{\wurzel{x+1}+1}x [/mm]

=  [mm] \bruch{x\wurzel{x}+(2x\wurzel{\wurzel{x}+1})*(4 \wurzel{\wurzel{x}+1})}{4 \wurzel{\wurzel{x}+1}} [/mm]

=  [mm] \bruch{x\wurzel{x}+8x( \wurzel{x}+1)}{4 \wurzel{\wurzel{x}+1}} [/mm]

= [mm] \bruch{x(\wurzel{x}+8( \wurzel{x}+1))}{4 \wurzel{\wurzel{x}+1}} [/mm]

= [mm] \bruch{x(\wurzel{x}+8 \wurzel{x}+8)}{4 \wurzel{\wurzel{x}+1}} [/mm]

= [mm] \bruch{x(9 \wurzel{x}+8)}{4 \wurzel{\wurzel{x}+1}} [/mm]

Eigentlich gar nicht so schwer. Ich hoffe du verstehst jeden Schritt. Sonst schreib einfach nochmal.

Bezug
                
Bezug
Bekomme Bruch nich vereinfacht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:18 Mo 03.07.2006
Autor: frkbtch

Hi, sehr schön, danke für die schnelle Antwort!
Der Lösungsweg ist mir klar! Ich glaube das Wesentliche, woran es bei mir gescheitert ist, war die Umformung von

[mm] x^{3/2} [/mm]

in

[mm] x\wurzel{x} [/mm]

Und wie das hergeleitet wird, ist mir leider immer noch nicht klar. Vielleicht kannst du mir das noch erklären! :)

Schönen Gruß

Bezug
                        
Bezug
Bekomme Bruch nich vereinfacht: Wikipedia
Status: (Antwort) fertig Status 
Datum: 11:31 Mo 03.07.2006
Autor: informix

Hallo frkbtch und [willkommenmr],
> Hi, sehr schön, danke für die schnelle Antwort!
>  Der Lösungsweg ist mir klar! Ich glaube das Wesentliche,
> woran es bei mir gescheitert ist, war die Umformung von
>
> [mm]x^{3/2}[/mm]
>  
> in
>  
> [mm]x\wurzel{x}[/mm]
>  
> Und wie das hergeleitet wird, ist mir leider immer noch
> nicht klar. Vielleicht kannst du mir das noch erklären! :)
>  

[guckstduhier] []Wikipedia: Potenzen in der Mathematik

Wenn noch was unklar bleibt, frag' weiter hier nach, aber mit konkreten Fragen.

Gruß informix

Bezug
                                
Bezug
Bekomme Bruch nich vereinfacht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:00 Mo 03.07.2006
Autor: frkbtch

Hallo - danke dir!
Alles klar jetzt, ist ja garnicht so schwer :)
Dein Link zu konkreten Fragen geht nicht, aber ich glaube ich weiß schon, was du meinst :)

Schönen Gruß

Bezug
                        
Bezug
Bekomme Bruch nich vereinfacht: ...kleiner Trick;-)!
Status: (Antwort) fertig Status 
Datum: 13:15 Mo 03.07.2006
Autor: Goldener_Sch.

Hallo frkbtch!!!
....und einen wunderschönen Tag, den Tag, bevor wir ins Finale einziehen[prost]!!!!!!!!!!!!

So, setzt aber zu der Frage:

Damit informix zufrieden ist, gebe ich nun eine konkrete Antwort;-).
Also die Frage ist für meine Begriffe wirklich konkret; ich weis wirklich nicht, was es da auszusetzten gibt!


Und damit nun endlich zur Frage:
Man kann nach der Wurzeldefinition, also, was eine (Quadrat-) Wurzel ist, und den Potenzgesetzen folgendes sinnvoll begründen:
[mm]a^{\left \bruch{m}{n} \right}=(\wurzel[n]{a})^m[/mm]
Außerdem gilt dann:
[mm]a^{\left \bruch{m}{n} \right}=\wurzel[n]{a^m}[/mm]
Wenn du diese Gesetzmäßigkeit auf deinen Term anwendetst, erhälst du folgendes:
[mm]x^{\left \bruch{3}{2} \right}=\wurzel[2]{x^3}=\wurzel{x^3}[/mm]
Genau diesen Radikanten kannst du folgendermaßen zerlegen:
[mm]\wurzel{x^3}=\wurzel{x^2*x}[/mm]
Nun kannst du teilweise die Wurzel ziehen; aber VORSICHT!
[mm]\wurzel{x^2*x}=\left|x\right|\wurzel{x}[/mm]
... also der Betrag von [mm]x[/mm] multipliziert mir der Wurzel aus [mm]x[/mm].
...Aber da war doch noch etwas, mit ...dass alle Variablen positiv sind.

Wenn du das berücksichtigst, dann gilt:[mm] \left|x\right|=x[/mm]...
und daher:
[mm] \Rightarrow[/mm] [mm]x^{\left \bruch{3}{2} \right}=x\wurzel{x}[/mm]

Hoffe, du veresteht mein Vorgehen!
Wenn nicht, dann frag bitte nach!


Mit den besten (Vor- Weltmeister[happy]-) Grüßen

Goldener Schnitt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de