www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - Belasteter Spannungsteiler
Belasteter Spannungsteiler < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Belasteter Spannungsteiler: Spannungsabfall Lastwiderstand
Status: (Frage) beantwortet Status 
Datum: 12:44 Fr 26.11.2010
Autor: Newbie89

Guten Tag,

mein Problem besteht darin, vom unbelasteten auf den belasteten Spannungsteiler zu kommen:

Link zur Schaltung: [URL] http://img28.imageshack.us/img28/1773/spannungsteiler.jpg [/URL]

Der Spannungabfall am unbelasteten Spannungsteiler beträgt:

[mm] $U_{L} [/mm] = [mm] \bruch{R_{2}}{R_{1}+R_{2}} [/mm] * U$

Im belasteten Fall lautet der Abfall nun:


[mm] $U_{L} [/mm] = [mm] \bruch{R_{2}}{R_{1}+R_{2}} [/mm] * U - [mm] \bruch{R_{1}* R_{2}}{R_{1}+R_{2}} [/mm] * [mm] I_{L}$ [/mm]

Jedoch komme ich rechnerisch nicht auf den zweiten Term =(.
Mir ist klar, dass der Spannungsabfall am belasteten Spannungsteiler kleiner ist als am unbelasteten Spannungsteiler.

Könnt Ihr mir da helfen?

        
Bezug
Belasteter Spannungsteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Fr 26.11.2010
Autor: leduart

Hallo
1. bevor ich das heftig editiert habe war es unlesbar!
sieh bitte deine posts mit vorschau an oder wenigstens nachdem sie abgeschickt sind. warum all die backslash vor den Buchstaben R usw?
Wenn du "normal rechnest, setzt du in die unbelastete formel statt R2 die parallelschaltung von [mm] R2undR_L [/mm] ein.
hier ist statt [mm] R_L [/mm] jetzt [mm] I_L [/mm] also ersetze [mm] I_L [/mm] durch [mm] U_L/R_L [/mm] in der gegebenen Formel und zeig, dass es das andere gibt. das schien mir einfacher als in der formel mit [mm] R_L R_L [/mm] durch [mm] U_L/I_L [/mm] zu ersetzen und dann nach [mm] U_L [/mm] auflösen.
Obs noch nen einfacheren Weg gibt seh ich grad nicht vielleicht über U=U1+UL=R1*(I2+IL)+R2*I2
hab ich nicht nachgerechnet.
Gruss leduart


Bezug
                
Bezug
Belasteter Spannungsteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 Fr 26.11.2010
Autor: Newbie89

Tut mir Leid, ich hatte das mit dem backslash falsch interpretiert...hatte es davon abgeleitet [mm] \IZ_{3}, [/mm] somit dachte ich, dass der Index in einer geschweiften Klammer inkl. Backslash stehen muss. Hat sich jetzt jedenfalls erledigt.

Leider konnte ich Deine Idee nicht zu Ende folgen:

Die Parallelschaltung aus [mm] R_2 [/mm] und [mm] R_L [/mm] sieht wie folgt aus: [mm] R_{2L} [/mm] = [mm] \bruch{R_2 R_L}{R_2 + R_L} [/mm]

Eingesetzt in die unbelastete Formel ergibt:

[mm] U_L [/mm] = [mm] \bruch{\bruch{R_2 R_L}{R_2 + R_L}}{R_1 + R_2} [/mm]

Du meinst, dass ich jetzt das [mm] R_L [/mm] durch [mm] R_L [/mm] = [mm] \bruch {U_L}{I_L} [/mm] ersetzen soll und dann nach [mm] U_L [/mm] umstellen soll?

Hoffentlich klappts jetzt besser mit den "Formeln"

Bezug
                        
Bezug
Belasteter Spannungsteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Fr 26.11.2010
Autor: leduart

Hallo
auch im Nenner musst du natürlich [mm] R_2 [/mm] ersetzen! Das Umformen nach U__l scheint mir aufwendig, nimm lieber die gegebene formel, setz [mm] I_L [/mm] ein und lös dann nach [mm] U_L [/mm] auf.
aber der andere weg sollte auch zum Ziel führen.
Gruss leduart


Bezug
                                
Bezug
Belasteter Spannungsteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 Fr 26.11.2010
Autor: Newbie89

Welche gegebene Formel soll ich benutzen?

Ich möchte vom unbelasteten Spannungsteiler auf den belasteten Spannungsteiler kommen.

Die Formel für [mm] U_L [/mm] im belasteten Spannungsteiler ist meine gewünschte Formel, die ich ja aus dem unbelasteten Spannungsteiler herleiten möchte.

Das mit dem Einsetzen von [mm] R_{2L} [/mm] in die Formel des unbelasteten Spannungsteilers ist mir zu aufwändig.

Geht dieser Weg auch über die Ersatzspannungsquelle?

Bezug
                                        
Bezug
Belasteter Spannungsteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Fr 26.11.2010
Autor: fencheltee


> Welche gegebene Formel soll ich benutzen?

die für den unbelasteten. für den belasteten musst du [mm] R_2 [/mm] ja mit dem [mm] R_{2L} [/mm] ersetzen (in zähler und nenner)

>  
> Ich möchte vom unbelasteten Spannungsteiler auf den
> belasteten Spannungsteiler kommen.
>  
> Die Formel für [mm]U_L[/mm] im belasteten Spannungsteiler ist meine
> gewünschte Formel, die ich ja aus dem unbelasteten
> Spannungsteiler herleiten möchte.
>  
> Das mit dem Einsetzen von [mm]R_{2L}[/mm] in die Formel des
> unbelasteten Spannungsteilers ist mir zu aufwändig.

naja, hält sich in grenzen

>  
> Geht dieser Weg auch über die Ersatzspannungsquelle?

natürlich
aber ob das schneller geht als fix nen spannungsteiler hinzufrickeln?

gruß tee


Bezug
                                                
Bezug
Belasteter Spannungsteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Sa 27.11.2010
Autor: Newbie89

So, ich habe es nun mal mit der Ersatzspannungsquelle versucht.

Diesmal werde ich meine komplette Rechnung darstellen, damit nachvollziehbar ist, wie ich gerechnet habe.
Dieses Mal komme ich auf die Formel mit dem Spannungsabfall beim belasteten Spannungsteiler, ABER mit falschem Vorzeichen?!

Hier nochmal die Prinzipskizze:

[Externes Bild http://img194.imageshack.us/i/spannungsteilerkomplett.jpg/]

Ohne Lastwiderstand:

[Externes Bild http://img404.imageshack.us/i/spannungsteilerohnerl.jpg/]

Zuerst habe ich die Spannungsteilerregel auf [mm] U_L [/mm] angewendet:

I = [mm] \bruch{U}{R_1 + R_2} [/mm] und I = [mm] \bruch{U_L}{R_2} [/mm]

Gleichsetzen und umstellen nach [mm] U_L [/mm] erbrachte:

[mm] U_L [/mm] = [mm] \bruch{R_2}{R_1 + R_2} \* [/mm] U

Nun bestimme ich den Kurzschlussstrom mit [mm] U_L [/mm] = 0 und I = [mm] I_K [/mm]

[mm] I_K [/mm] = [mm] \bruch{U}{R_1} [/mm]

Bild der Ersatzspannungsquelle: [Externes Bild http://img808.imageshack.us/i/ersatzspannungsquelle.jpg/]

Für [mm] R_e [/mm] folgt: [mm] R_e [/mm] = [mm] \bruch{U_L}{I_K} [/mm] = [mm] \bruch{\bruch{R_2}{R_1 + R_2} \* U}{\bruch{U}{R_1}} [/mm] = [mm] \bruch{R_1 \* R_2}{R_1 + R_2} [/mm]

Jetzt die Ersatzspannungsquelle mit Lastwiderstand:

[Externes Bild http://img560.imageshack.us/i/ersatzspannungsquellemi.jpg/]

Es folgt für den Laststrom: [mm] I_L [/mm] = [mm] \bruch{U_L}{R_e + R_L} [/mm]

[mm] U_L [/mm] = [mm] I_L \* (R_e [/mm] + [mm] R_L) [/mm] = [mm] I_L \* (\bruch{R_1 \* R_2}{R_1 + R_2} [/mm] + [mm] R_L) [/mm]

mit [mm] R_L [/mm] = [mm] \bruch{U_L}{I_L} [/mm] = [mm] \bruch{R_2 \* U}{R_1 + R_2} \* \bruch{1}{I_L} [/mm]

folgt: [mm] U_L [/mm] = [mm] \bruch{R_1 \* R_2}{R_1 + R_2} \* I_L [/mm] + [mm] \bruch{R_2}{R_1 + R_2} \* [/mm] U

genau hier liegt der Hund begraben, laut Lösung muss für [mm] U_L [/mm] gelten:

[mm] U_L [/mm] = [mm] U_L [/mm] = - [mm] \bruch{R_1 \* R_2}{R_1 + R_2} \* I_L [/mm] + [mm] \bruch{R_2}{R_1 + R_2} \* [/mm] U

Ich weiß nicht, wo in meiner Rechnung der Fehler liegt...könnt ihr mir da helfen?

Gruß Fabian

Bezug
                                                        
Bezug
Belasteter Spannungsteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 17:06 Sa 27.11.2010
Autor: leduart

Hallo
ich versteh deine Rechng überhaupt nicht.

> So, ich habe es nun mal mit der Ersatzspannungsquelle
> versucht.
>  
> Diesmal werde ich meine komplette Rechnung darstellen,
> damit nachvollziehbar ist, wie ich gerechnet habe.
>  Dieses Mal komme ich auf die Formel mit dem
> Spannungsabfall beim belasteten Spannungsteiler, ABER mit
> falschem Vorzeichen?!
>  
> Hier nochmal die Prinzipskizze:
>  
> [Externes Bild http://img194.imageshack.us/i/spannungsteilerkomplett.jpg/]
>  
> Ohne Lastwiderstand:
>  
> [Externes Bild http://img404.imageshack.us/i/spannungsteilerohnerl.jpg/]
>  
> Zuerst habe ich die Spannungsteilerregel auf [mm]U_L[/mm]
> angewendet:
>  
> I = [mm]\bruch{U}{R_1 + R_2}[/mm] und I = [mm]\bruch{U_L}{R_2}[/mm]
>  
> Gleichsetzen und umstellen nach [mm]U_L[/mm] erbrachte:
>  
> [mm]U_L[/mm] = [mm]\bruch{R_2}{R_1 + R_2} \*[/mm] U

klar und richtig.

> Nun bestimme ich den Kurzschlussstrom mit [mm]U_L[/mm] = 0 und I =
> [mm]I_K[/mm]
>  
> [mm]I_K[/mm] = [mm]\bruch{U}{R_1}[/mm]
>  
> Bild der Ersatzspannungsquelle:
> [Externes Bild http://img808.imageshack.us/i/ersatzspannungsquelle.jpg/]
>  
> Für [mm]R_e[/mm] folgt: [mm]R_e[/mm] = [mm]\bruch{U_L}{I_K}[/mm] =
> [mm]\bruch{\bruch{R_2}{R_1 + R_2} \* U}{\bruch{U}{R_1}}[/mm] =
> [mm]\bruch{R_1 \* R_2}{R_1 + R_2}[/mm]

das versteh ich nicht. du hast doch R2=0 gesetzt um [mm] I_K [/mm] zu berechnen, jetz ist auf einmal R_! und [mm] R_2 [/mm] parallel geschaltet?

> Jetzt die Ersatzspannungsquelle mit Lastwiderstand:
>  
> [Externes Bild http://img560.imageshack.us/i/ersatzspannungsquellemi.jpg/]
>  
> Es folgt für den Laststrom: [mm]I_L[/mm] = [mm]\bruch{U_L}{R_e + R_L}[/mm]

versteh ich auch nicht: [mm] U_L [/mm] liegt doch an [mm] R_L [/mm] wieso an [mm] R_e+R_L [/mm]

> [mm]U_L[/mm] = [mm]I_L \* (R_e[/mm] + [mm]R_L)[/mm] = [mm]I_L \* (\bruch{R_1 \* R_2}{R_1 + R_2}[/mm]
> + [mm]R_L)[/mm]
>  
> mit [mm]R_L[/mm] = [mm]\bruch{U_L}{I_L}[/mm] = [mm]\bruch{R_2 \* U}{R_1 + R_2} \* \bruch{1}{I_L}[/mm]
>  
> folgt: [mm]U_L[/mm] = [mm]\bruch{R_1 \* R_2}{R_1 + R_2} \* I_L[/mm] +
> [mm]\bruch{R_2}{R_1 + R_2} \*[/mm] U
>  
> genau hier liegt der Hund begraben, laut Lösung muss für
> [mm]U_L[/mm] gelten:
>  
> [mm]U_L[/mm] = [mm]U_L[/mm] = - [mm]\bruch{R_1 \* R_2}{R_1 + R_2} \* I_L[/mm] +
> [mm]\bruch{R_2}{R_1 + R_2} \*[/mm] U
>  
> Ich weiß nicht, wo in meiner Rechnung der Fehler
> liegt...könnt ihr mir da helfen?

da ich sie nicht mal kapiere, und ja offensichtlich was falsches rauskommt

warum berechnest du nicht einfach den Spannungsteiler zwischen [mm] R_1 [/mm] und [mm] R_2||R_L [/mm]
darin dann [mm] R_L=U_L/I_L [/mm]
Gruss leduart


Bezug
                                                                
Bezug
Belasteter Spannungsteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Sa 27.11.2010
Autor: Newbie89

Hallo leduart,

bei der Ersatzspannungsquelle führt man den Spannungsteiler in eine Ersatzspannungsquelle um (LINK: http://et-tutorials.de/428/losung-der-aufgabe-mit-hilfe-einer-ersatzspannungsquelle/ )

Hier ist [mm] R_e [/mm] der Ersatzwiderstand, also    [mm] R_e [/mm]  = [mm] \bruch{U_L}{I_K} [/mm] =
[mm] \bruch{\bruch{R_2}{R_1 + R_2} * U}{\bruch{U}{R_1}} [/mm]  = [mm] \bruch{R_1 * R_2}{R_1 + R_2} [/mm]



Dieses [mm] R_e [/mm] und [mm] R_L [/mm] folgt aus der Ersatzspannungsquelle, denn da schließt man den Lastwiderstand an die Klemmen an und folglich hat man eine Reihenschaltung aus [mm] R_e [/mm] und [mm] R_L [/mm] .

Hmm....eigentlich ist laut Aufgabenstellung der Weg über die Ersatzspannungsquelle gefordert!!

Bezug
                                                                        
Bezug
Belasteter Spannungsteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 01:37 So 28.11.2010
Autor: GvC


> Hallo leduart,
>  
> bei der Ersatzspannungsquelle führt man den
> Spannungsteiler in eine Ersatzspannungsquelle um (LINK:
> http://et-tutorials.de/428/losung-der-aufgabe-mit-hilfe-einer-ersatzspannungsquelle/
> )
>  
> Hier ist [mm]R_e[/mm] der Ersatzwiderstand, also    [mm]R_e[/mm]  =
> [mm]\bruch{U_L}{I_K}[/mm] =
>   [mm]\bruch{\bruch{R_2}{R_1 + R_2} * U}{\bruch{U}{R_1}}[/mm]  =
> [mm]\bruch{R_1 * R_2}{R_1 + R_2}[/mm]
>  
>
>
> Dieses [mm]R_e[/mm] und [mm]R_L[/mm] folgt aus der Ersatzspannungsquelle,
> denn da schließt man den Lastwiderstand an die Klemmen an
> und folglich hat man eine Reihenschaltung aus [mm]R_e[/mm] und [mm]R_L[/mm]
> .
>  
> Hmm....eigentlich ist laut Aufgabenstellung der Weg über
> die Ersatzspannungsquelle gefordert!!

So ist es. Denn die Spannung [mm] U_2 [/mm] des unbelasteten Spannungsteilers ist die Leerlaufspannung der Ersatzquelle. Der Innenwiderstand der Ersatzquelle (den Du [mm] R_e [/mm] genannt hast), ist der Widerstand zwischen den unbelasteten Klemmen von [mm] R_2. [/mm] Da siehst Du sofort, dass [mm] R_e [/mm] = [mm] R_1||R_2, [/mm] und brauchst nicht erst den Kurzschlussstrom zu berechnen.

Die Rechnung sieht also so aus:

Unbelasteter Teiler:

[mm] U_2 [/mm] = [mm] U*\bruch{R_2}{R_1+R_2} [/mm]

Belasteter Teiler:

[mm] U_L [/mm] = [mm] U_2*\bruch{R_L}{R_e+R_L} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de