www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Berechnung Integral
Berechnung Integral < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Mo 20.01.2014
Autor: leasarfati

Aufgabe
Berechnen Sie die unbestimmten Integrale.
a) [mm] \integral2^x [/mm] dx
b) [mm] \integral 0,8^x [/mm] dx
c) [mm] \integral 3^{0,5x} [/mm] dx
d) [mm] \integral 4^{2x} [/mm] dx

Hallo,

ich habe hierbei folgendes raus:

a) [mm] \bruch{1}{ln2}*2^x [/mm] +C
b) [mm] \bruch{1}{ln0,8}*0,8^x [/mm] +C
c) [mm] \bruch{1}{ln3}*3^{0,5}+ [/mm] C
d) [mm] \bruch{1}{ln4}*4^{2x} [/mm] * C

Sind die Lösungen richtig? Vielen Dank!

        
Bezug
Berechnung Integral: Korrekturen
Status: (Antwort) fertig Status 
Datum: 17:01 Mo 20.01.2014
Autor: Loddar

Hallo leasarfati!


> a) [mm]\bruch{1}{ln2}*2^x[/mm] +C

[ok]


> b) [mm]\bruch{1}{ln0,8}*0,8^x[/mm] +C

[ok]


> c) [mm]\bruch{1}{ln3}*3^{0,5}+[/mm] C

[notok] Zum einen fehlt das x im Exponenten.
Zum anderen hast Du den Faktor $0{,}5_$ im Exponenten beim Integrieren ignoriert.


> d) [mm]\bruch{1}{ln4}*4^{2x}[/mm] * C

[notok] Auch hier wurde der Faktor im Exponenten ignoriert.
Und es muss natürlich [mm] $\red{+} [/mm] \ C$ lauten.


Gruß
Loddar

Bezug
                
Bezug
Berechnung Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 Mo 20.01.2014
Autor: leasarfati

Ich bin mir nicht sicher, wie man c) und d) jetzt rechnet. Gibt es dafür eine Formel?

Bezug
                        
Bezug
Berechnung Integral: 2 Wege
Status: (Antwort) fertig Status 
Datum: 17:12 Mo 20.01.2014
Autor: Loddar

Hallo leasarfati!


Betrachten wir z.B. $f(x) \ = \ [mm] 4^{2*x}$ [/mm] .

Das kann ich entweder mittels MBPotenzgesetzen umformen zu:

$f(x) \ = \ [mm] 4^{2*x} [/mm] \ = \ [mm] \left(4^2\right)^x [/mm] \ = \ [mm] 16^x$ [/mm]


Oder man führt für die Integration die Substitution $z \ := \ 2x$ durch.


Gruß
Loddar

Bezug
                                
Bezug
Berechnung Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:17 Mo 20.01.2014
Autor: leasarfati

Also muss ich bei d) schreiben: [mm] \bruch{1}{ln16}*16^x [/mm] +C ??

Bezug
                                        
Bezug
Berechnung Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Mo 20.01.2014
Autor: Valerie20


> Also muss ich bei d) schreiben: [mm]\bruch{1}{ln16}*16^x[/mm] +C ??

[ok]

Bezug
                                                
Bezug
Berechnung Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 Mo 20.01.2014
Autor: leasarfati

okay, und bei c) muss es dann doch heißen: [mm] \bruch{1}{\wurzel{3}}*\wurzel{3}^{x} [/mm] +C

oder?

Bezug
                                                        
Bezug
Berechnung Integral: Logarithmus fehlt
Status: (Antwort) fertig Status 
Datum: 17:26 Mo 20.01.2014
Autor: Loddar

Hallo leasarfati!



> okay, und bei c) muss es dann doch heißen:
> [mm]\bruch{1}{\wurzel{3}}*\wurzel{3}^{x}[/mm] +C

[notok] Hier fehlt ein [mm] $\ln(...)$ [/mm] in der Lösung.


Gruß
Loddar

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de