www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Berechnung Jacobi-Symbol
Berechnung Jacobi-Symbol < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung Jacobi-Symbol: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:09 Mo 15.06.2009
Autor: Papewaio

Aufgabe
Zeigen sie, dass [mm] \vektor{3 \\ 3^n-2} [/mm] = [mm] (-1)^n [/mm] für alle n [mm] \in \IN \setminus [/mm] {1}

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Ich dachte mir, man könnte diese Aufgabe vielleicht mit vollständiger Induktion bearbeitet und legte los:

IA. n = 2:  [mm] \vektor{3 \\ 3^2-2} [/mm] = [mm] \vektor{3 \\ 7} [/mm] = [mm] -\vektor{7 \\ 3} [/mm]  da 7 und 3 jeweils 3 mod (4) sind muss wegen dem Reziprozitätsgesetz ein Minis hinzu.
[mm] -\vektor{7 \\ 3} [/mm] kann man reduzieren auf [mm] -\vektor{1 \\ 3} [/mm]

folglich [mm] -\vektor{1 \\ 3} [/mm] = -1, was jedoch nicht gleich [mm] (-1)^2 [/mm] ist.


Da ich meine Dozentin eher nicht so einschätze, als dass die Aufgabe "so einfach" zu widerlege ist, vermute ich, dass ich einen Rechenfehler drin habe, ich sehe aber nicht welche. Das Vertrauen in meine mathematischen Fähigkeiten ist noch nicht so überwiegend, um dies einfach so abzugeben.
Ich sehe jedoch keinen Fehler. Kann mir jemand weiterhelfen?

        
Bezug
Berechnung Jacobi-Symbol: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:33 Mo 15.06.2009
Autor: Papewaio

Ich habe mir nochmal das Reziprozitätsgesetz angeschaut und die "formalere" Schreibweise durchgecheckt.


[mm] \vektor{m \\ n} [/mm] = [mm] \vektor{n \\ m} [/mm] * [mm] (-1)^{\bruch{m-1}{2} * \bruch{n-1}{2}}, [/mm] falls (m,n)=1.

wenn ich das nun mit [mm] \vektor{3 \\ 7} [/mm] durchgehe komme ich auch auf (-1).

Ich würde jetzt steif und fest behauptet, dass die zu zeigende Gleichung falsch ist.


Bezug
        
Bezug
Berechnung Jacobi-Symbol: Antwort
Status: (Antwort) fertig Status 
Datum: 19:46 Mo 15.06.2009
Autor: felixf

Hallo!

> Zeigen sie, dass [mm]\vektor{3 \\ 3^n-2}[/mm] = [mm](-1)^n[/mm] für alle n
> [mm]\in \IN \setminus[/mm] {1}
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
> Ich dachte mir, man könnte diese Aufgabe vielleicht mit
> vollständiger Induktion bearbeitet und legte los:
>  
> IA. n = 2:  [mm]\vektor{3 \\ 3^2-2}[/mm] = [mm]\vektor{3 \\ 7}[/mm] =
> [mm]-\vektor{7 \\ 3}[/mm]  da 7 und 3 jeweils 3 mod (4) sind muss
> wegen dem Reziprozitätsgesetz ein Minis hinzu.
>  [mm]-\vektor{7 \\ 3}[/mm] kann man reduzieren auf [mm]-\vektor{1 \\ 3}[/mm]
>  
> folglich [mm]-\vektor{1 \\ 3}[/mm] = -1, was jedoch nicht gleich
> [mm](-1)^2[/mm] ist.

Ja.

> Da ich meine Dozentin eher nicht so einschätze, als dass
> die Aufgabe "so einfach" zu widerlege ist, vermute ich,
> dass ich einen Rechenfehler drin habe, ich sehe aber nicht
> welche. Das Vertrauen in meine mathematischen Fähigkeiten
> ist noch nicht so überwiegend, um dies einfach so
> abzugeben.

Nun, wenn man sich das etwas genauer anschaut, stellt man fest dass die Gleichung fuer $n [mm] \in \{ 2, \dots, 1000 \}$ [/mm] nicht stimmt. (In Maple sieht man das schnell mit seq(numtheory[jacobi](3, 3^n - 2) - (-1)^n, n = 2..1000);)

Das sollte einem allerdings auch einen Hinweis geben darauf, wie die Aufgabenstellung wohl gemeint war: naemlich dass man [mm] $\jacobi{3}{3^n - 2} [/mm] = [mm] -(-1)^n [/mm] = [mm] (-1)^{n+1}$ [/mm] zeigt fuer $n [mm] \ge [/mm] 1$. (Fuer $n = 1$ gilt das auch.)

LG Felix


Bezug
                
Bezug
Berechnung Jacobi-Symbol: "Korrektur der Aufgabe"
Status: (Frage) überfällig Status 
Datum: 09:12 Sa 20.06.2009
Autor: Papewaio

Aufgabe
Zeigen sie, dass [mm] \vektor{3 \\ 3^n-2} [/mm] = [mm] (-1)^{n+1} [/mm] für alle [mm] n\in\IN\ [/mm] {1}.

Hi Felix,
erstmal danke, dass du mir so schnell geantwortet hast und sorry, dass ich mich erst jetzt melde.
Wir haben mittlerweile die korrigierte Aufgabe erhalten.
Ich habe auch angefangen in dem ich n aufspalte in gerade und ungerade zahlen.
1) Sei n gerade, setzte n=2n, also:
[mm] \vektor{3 \\ 3^{2n}-2} [/mm] = [mm] (-1)^{2n+1} [/mm]
[mm] \gdw \vektor{3 \\ 3^{2n}-2} [/mm] = (-1)
Mit den Rechenregeln des Jacobisymbols folgt.
[mm] \vektor{3^{2n}-2 \\ 3}*(-1)^{\bruch{3-1}{2}*\bruch{3^{2n}-2-1} {2}}=(-1) [/mm]
[mm] \gdw \vektor{3^{2n}-2 \\ 3}*(-1)^{\bruch{3^{2n}-3}{2}} [/mm] = (-1)

Da [mm] 3^{2n} \equiv [/mm] 0 mod 3, ist [mm] 3^{2n}-2 \equiv [/mm] 1 mod 3.
Demnach kann ich es mod 3 reduzieren:
[mm] \vektor{1 \\ 3}*(-1)^{\bruch{3^{2n}-3}{2}} [/mm] = (-1)

[mm] \gdw (-1)^{\bruch{3^{2n}-3}{2}} [/mm] =(-1)

Jetzt muss ich noch zeigen, dass [mm] \bruch{3^{2n}-3}{2} [/mm] ungerade ist.
Hier hakt es ein wenig.
Ich weiß, dass [mm] 3^{2n} [/mm] ungerade ist, da 3er Potenz, somit ist [mm] 3^{2n}-3 [/mm] gerade. Aber ich schaffe es nicht zu zeigen, dass [mm] 3^{2n}-3 [/mm] nicht  0 mod 4, dass also beim Teilen durch 2 auch wirklich eine ungerade Zahl heraus kommt.

Analog habe ich das Problem für ungerade n. Setze n=2n+1, dann folgt:
[mm] \vektor{1 \\ 3}*(-1)^{\bruch{3^{2n+1}-3}{2}}=1 [/mm]
[mm] \gdw (-1)^{\bruch{3^{2n+1}-3}{2}}=1 [/mm]
Auch hier hakt es beim zeigen, dass [mm] 3^{2n+1}-3 \equiv [/mm] 0 mod 4 ist, dass also beim Teilen durch 2 auch wirklich eine gerade Zahl heraus kommt.
Ich habe irgendwie das Gefühl, dass es gar nicht wahnsinnig schwer ist, komme mir aber vor, wie der blinde vorm Berg.


Bezug
                        
Bezug
Berechnung Jacobi-Symbol: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Mo 22.06.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de