www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Berechnung Lyapunov-Exponenten
Berechnung Lyapunov-Exponenten < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung Lyapunov-Exponenten: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:25 Do 22.11.2012
Autor: Iluvatar

Aufgabe
Berechne den größten Lyapunov-Exponenten für die dissipative Standardabbildung.

Die dissipative Standardabbildung ist 2-dimensional, daher gibt es zwei Lyapunov-Exponenten. Die Summe beider Exponenten ist mir auch bekannt, da die Determinante der Funktionalmatrix über den gesamten Orbit gleich bleibt. Allerdings versuche ich die Exponenten numerisch zu berechnen.

Ich habe auch einen Weg gefunden/benutzt, um den größten recht effektiv zu berechnen, allerdings entzieht sich mir, warum dieser überhaupt funktioniert.
[mm] \mathrm{D}\mathbf{f}^t(\mathbf{x}_t) [/mm] sei die Funktionalmatrix der Abbildung nach $t$-vorhergehenden Iterationen an der Stelle [mm] \mathbf{x}_t. [/mm]
Das Lyapunov-Spektrum ließe sich rein formal mit
[mm] \lambda_n [/mm] = [mm] \lim_{t \to \infty} \frac{1}{t} \ln \left| \Lambda_n\left( \mathrm{D}\mathbf{f}^t (\mathbf{x}_0)\right)\right| [/mm]
berechnen [mm] (\Lambda_n [/mm] bezeichnet den $n$-ten Eigenwert).
Die Funktionalmatrix lässt sich nach jedem Zeitschritt skalieren, indem man sie durch ein reelles Vielfaches eines ihren Einträge teilt. Diese Einträge seien in [mm] \alpha_t [/mm] vermerkt, so dass man auch
[mm] \lambda_n [/mm] = [mm] \lim_{t \to \infty} \frac{1}{t} \ln \left| \alpha_t \Lambda_n\left( \mathrm{D}^\star\mathbf{f}^t (\mathbf{x}_0)\right)\right| [/mm]
schreiben kann.
Mit wenigen Umformungen und das ganze bis zu $T$  mit $t$ als Laufindex kann man dieses Produkt als Summe schreiben und  
[mm] \lim_{T \to \infty}\frac{1}{T}\sum_{t=0}^{T-1} \log \alpha_t [/mm]
ergibt schon den größten Lyapunov-Exponenten.

Ich kenne dieses Verfahren, indem man schaut wie sich eine Anfangsstörung [mm] \varepsilon_0 [/mm] entwickelt und sich dieser zu einem Eigenvektor der Funktionalmatrix ausrichtet und der zugehörige Streckungsfaktor einem Eigenwert dieser Matrix entspricht. Warum man immer den größten mit dieser Methode erwischt ist mir auch klar.

Doch wieso klappt es den größten Lyapunov-Exponenten ohne Bestimmung eines Eigenwertes/Eigenvektors zu ermitteln? Die Skalierungsfaktoren zu den einzelnen Funktionalmatrizen an den verschiedenen Stellen im Orbit reichen offenbar.


        
Bezug
Berechnung Lyapunov-Exponenten: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Do 29.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de