www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Berechnung der komplexen Zahl
Berechnung der komplexen Zahl < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung der komplexen Zahl: Erklärung
Status: (Frage) beantwortet Status 
Datum: 03:14 Sa 23.11.2013
Autor: Benko

Aufgabe
Berechnen Sie die komplexe Zahl...


Hallo ich komme bei einer Aufg. einfach nich auf ein zufriedenstellendes Ergebnis..
Aufgabe:

[mm] z=\wurzel{-i*(-2)^2} [/mm]

<=> [mm] z^2=-i [/mm]
[mm] \varphi=-1/0 [/mm] ===> Lücke
ander der Stelle hab ich das Ergebnis für den Winkel ignoriert und mit 0 angenommen. [mm] 2*\pi [/mm] dazu addiert, wg. -i (4. Q.)

danach hab ich z0 und z1 mithilfe Moivre berechnet..

=> z0= [mm] e^{i*\pi} [/mm]
=> z1= [mm] e^{-i*2*\pi} [/mm]

Wo ist mein Fehler und der Trick?
Vielen Dank schon mal im Vorraus

        
Bezug
Berechnung der komplexen Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 06:17 Sa 23.11.2013
Autor: angela.h.b.


> Berechnen Sie die komplexe Zahl...

>

> Hallo ich komme bei einer Aufg. einfach nich auf ein
> zufriedenstellendes Ergebnis..
> Aufgabe:

Hallo,

Du möchtest also

> [mm]z=\wurzel{-i*(-2)^2}[/mm]

[mm] =2\wurzel{-i} [/mm] bestimmen.


Deshalb interessierst Du Dich für die Gleichung
>

> [mm]z^2=-i[/mm].

(Du darfst nicht schreiben:
[mm] z=\wurzel{-i*(-2)^2}\quad [/mm] <==> [mm] z^2=-i, [/mm]
denn das stimmt nicht.)


> [mm]\varphi=-1/0[/mm] ===> Lücke

Wie kommst Du denn darauf?

Es ist doch [mm] -i=e^{i*\bruch{3}{2}\pi}. [/mm]

Jetzt kommst Du sicher weiter.



> ander der Stelle hab ich das Ergebnis für den Winkel
> ignoriert und mit 0 angenommen.

Hm. Ergebnisse zu ignorieren und sich stattdessen etwas auszudenken, scheint mir keine verheißungsvolle Strategie zu sein.

LG Angela

Bezug
                
Bezug
Berechnung der komplexen Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Sa 23.11.2013
Autor: Benko

Ok danke Angela, jo ignorieren bringt wohl nix lol.. LG
Bezug
                        
Bezug
Berechnung der komplexen Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Sa 23.11.2013
Autor: DieAcht

Hallo,

Angela hat dir meiner Meinung nach schon alles gesagt, aber ich probiere es gerne nochmal.

[mm] z=\sqrt{-i(-2)^2}=\sqrt{-i\cdot4}=\sqrt{-i}\cdot\sqrt{4}=2\sqrt{-i}=2\cdot\sqrt{e^{i\bruch{3}{2}\pi}} [/mm]

Nun du!

Gruß
DieAcht

Bezug
                                
Bezug
Berechnung der komplexen Zahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:52 Sa 23.11.2013
Autor: Benko

Ne sry. ich habe mich gestern vertippt....

Der Klammerausdruck war falsch, mein Fehler.

z= [mm] \wurzel{-i*(-1)^2} [/mm]

und nich, wie ich gestern meinte...Tippfehler

z= [mm] \wurzel{-i*(-2)^2} [/mm]

Bezug
                                
Bezug
Berechnung der komplexen Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:02 Sa 23.11.2013
Autor: Benko

Ne sry. ich habe mich gestern vertippt....

Der Klammerausdruck war falsch, mein Fehler.

z=  [mm] \wurzel{-i\cdot{}(-1)^2} [/mm]

und nich, wie ich gestern meinte...Tippfehler

z=  [mm] \wurzel{-i\cdot{}(-2)^2} [/mm]

Bezug
                                        
Bezug
Berechnung der komplexen Zahl: fast genauso
Status: (Antwort) fertig Status 
Datum: 17:49 Sa 23.11.2013
Autor: Loddar

Hallo Benko!


Dann ist es doch fast genauso, wie bereits oben beschrieben:

$ [mm] z=\sqrt{-i*(-1)^2}=\sqrt{-i\cdot1}=\sqrt{-i}=\sqrt{e^{i\bruch{3}{2}\pi}} [/mm] $


Gruß
Loddar

Bezug
                                                
Bezug
Berechnung der komplexen Zahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Sa 23.11.2013
Autor: Benko

also wolfram alpha gibt mir folgende 2 ergebnisse..

z0= [mm] e^{i{\pi*3/4}} [/mm]


z1= [mm] e^{-i{\pi/4}} [/mm]

bitte um einen nachvollziehbaren Lösungsansatz!

Bezug
                                                        
Bezug
Berechnung der komplexen Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Sa 23.11.2013
Autor: chrisno

Das solltest Du selbst herausbekommen, dass es keinen Widerspruch gibt. Als Tipp: Rechenregeln mit Potenzen, Spezialfall mit 1/2.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de