www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Berechnung des Integrals
Berechnung des Integrals < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung des Integrals: benötige Hilfe beim lösen
Status: (Frage) beantwortet Status 
Datum: 20:36 Mi 30.04.2008
Autor: charlieM

Aufgabe
1) Berechnen Sie [mm] \integral\wurzel[3]{\bruch{x}{4}-1dx}. [/mm]

2) Berechnen Sie [mm] \integral\wurzel{1+e^x}dx. [/mm] Hinweis: Führen Sie die Substitution u = [mm] \wurzel{e^x+1} [/mm] durch. Dann bleibt Überschaubares zu tun übrig.

Hallo,

habe so meine Probleme mit diesen beiden Integralen, weiss nicht wirklich wie ich Anfangen soll bzw. wie man diese Aufgaben löst, deswegen wäre ich für jede Hilfestellung oder Lösung Dankbar.

Hoffe mir hilft jemand von euch dabei, würde mich wirklich freuen :).

Gruß

Charlie

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Berechnung des Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Mi 30.04.2008
Autor: schachuzipus

Hallo Charlie,

erst einmal herzlich [willkommenmr]

wir erwarten eigentlich ein gewisses, wenn auch nur eher kleines Maß an Eigeninitiative beim Lösen von Aufgaben.

Wie sehen denn deine Ansätze aus?

Du sagst, du weißt nicht, wie du anfangen sollst, aber bei der (b) ist es dir doch schon als Tipp "vorgesagt" ;-)

Einfach mal ansetzen!

Ich nehme an, dir ist die Integration per Substitution bekannt...

Also mit dem Tipp bei der (b) ist

[mm] $u=\sqrt{e^x+1}$, [/mm] also

[mm] $u^2=e^x+1\Rightarrow x=\ln(u^2-1)=\ln\left[(u+1)(u-1)\right]=\ln(u+1)+\ln(u-1)$ [/mm]

Damit ist [mm] $x'=\frac{dx}{du}=\frac{1}{u+1}+\frac{1}{u-1}$, [/mm] also [mm] $\red{dx=\left(\frac{1}{u+1}+\frac{1}{u-1}\right) \ du}$ [/mm]

Das mal alles einsetzen:

[mm] $\int{\sqrt{e^x+1} \ \red{dx}}=\int{u \ \red{\left(\frac{1}{u+1}+\frac{1}{u-1}\right) \ du}}$ [/mm]

[mm] $=\int{\left(\frac{u}{u+1}+\frac{u}{u-1}\right) \ du}=\int{\left(\frac{u\red{+1-1}}{u+1}+\frac{u\red{-1+1}}{u-1}\right) \ du}=\int{\left(1-\frac{1}{u+1}+1+\frac{1}{u-1}\right) \ du}$ [/mm]

[mm] $=\int{2 \ du}-\int{\frac{1}{u+1} \ du}+\int{\frac{1}{u-1} \ du}$ [/mm]

Und das kannst du ja im Schlaf berechnen...

Wenn du fertig bist, das Rücksubstituieren nicht vergessen ;-)


Beim Integral in der ersten Aufgabe hilft dir auch eine Substitution, versuche [mm] $u:=\frac{x}{4}-1$ [/mm]


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de