www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Berechnung eines Integrals
Berechnung eines Integrals < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung eines Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:52 Do 13.07.2006
Autor: Milka_Kuh

Aufgabe
Berechne:  [mm] \integral_{0}^{\infty}{ \bruch{1}{t^{4}+t^{2}+1} dt} [/mm]

Hallo,

hierbei handelt es sich beim Integrand um eine rationale Funktion in einer Variablen t.
Ich weiß nicht genau, wie ich bei der Berechnung des Integrals vorgehen soll. Ich habe versucht, die Nullstellen des Nenners zu finden, komme aber da nicht weiter. Es muss sich hier um komplexe Nullstellen handeln.
Dann habe ich versucht, die Partialbruchzerlegung anzuwenden, um den Nenner in Faktoren zu zerlegen, geht aber auch nicht so einfach...
Bestimmt hat die Aufgabe etwas mit dem Residuensatz zu tun, den wir gerade behandeln,aber wie ich den genau anwenden soll, weiß ich nicht. Der Stoff ist auch nicht ziemlich neu...
Kann mir jemand weiterhelfen?
Vielen Dank,
milka

        
Bezug
Berechnung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Fr 14.07.2006
Autor: Event_Horizon

Warum substituierst du für die Nullstellen nicht erstmal [mm] $t^2 \to [/mm] s$? Das gibt dir nen quadratischen Term [mm] $s^2+s+1=0$ [/mm] und mittels PQ-Formel $s= [mm] -\bruch{1}{2}\pm \wurzel{-\bruch{3}{4}}=-\bruch{1}{2}\pm i\wurzel{\bruch{3}{4}}$ [/mm]

Hieraus müßtest du jetzt noch die Wurzel ziehen, und dann hast du die insgesamt 4 Nullstellen.


Der Residuensatz berechnet ja das Wegintegral entlang der x-Achse und einen Halbkreis im positiven imaginären Bereich.

Weil der Nennergrad mehr als 2 größer als der Zählergrad ist, strebt das Integral über den Kreisbogen gegen 0, und das gesamte Integral besteht nur noch aus der reellen Achse. Das Ergebnis mußt du noch halbieren, weil du ja  0<t<oo als Integrationsgebiet hast, nicht -oo<t<oo


Kommst du mit dem Residuensatz selbst denn nun klar?



Bezug
                
Bezug
Berechnung eines Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:48 Fr 14.07.2006
Autor: Milka_Kuh

Hallo,

danke für deine Antwort. Leider hab ich nicht alles verstanden. Wie kommst du auf 4 Nullstellen?

> Warum substituierst du für die Nullstellen nicht erstmal
> [mm]t^2 \to s[/mm]? Das gibt dir nen quadratischen Term [mm]s^2+s+1=0[/mm]
> und mittels PQ-Formel [mm]s= -\bruch{1}{2}\pm \wurzel{-\bruch{3}{4}}=-\bruch{1}{2}\pm i\wurzel{\bruch{3}{4}}[/mm]
>  
> Hieraus müßtest du jetzt noch die Wurzel ziehen, und dann
> hast du die insgesamt 4 Nullstellen.

Ich erhalte, nachdem ich die Wurzel gezogen habe, nur 2 Nullstellen, nämlich: [mm] s_{1}= -\bruch{1}{2}+ \bruch{i}{2}\wurzel{3} [/mm] und [mm] s_{2}= -\bruch{1}{2}- \bruch{i}{2}\wurzel{3} [/mm]

> Der Residuensatz berechnet ja das Wegintegral entlang der
> x-Achse und einen Halbkreis im positiven imaginären
> Bereich.
>  
> Weil der Nennergrad mehr als 2 größer als der Zählergrad
> ist, strebt das Integral über den Kreisbogen gegen 0, und
> das gesamte Integral besteht nur noch aus der reellen
> Achse. Das Ergebnis mußt du noch halbieren, weil du ja  
> 0<t<oo als Integrationsgebiet hast, nicht -oo<t<oo
>  
>
> Kommst du mit dem Residuensatz selbst denn nun klar?

So wie es jetzt verstanden habe, muss ich das gegebene Integral jetzt zerlegen in:

[mm] \integral_{[0,r]+\lambda_{r}}^{}{ \bruch{1}{s^{2}+s+1 }ds}, [/mm] das kann ich jetzt in 2 Teilintegrale aufspalten:

[mm] \integral_{0}^{r}{ \bruch{1}{s^{2}+s+1 }ds}+\integral_{\lambda_{r}}^{}{ \bruch{1}{s^{2}+s+1 }ds}, [/mm] wobei [mm] \lambda_{r} [/mm] die Parametrisierung des Halbkreises im pos. imag. Bereich ist. Stimmt das so?
In der Vorl. hatten wir so ein ähnliches Beispiel. Da haben wir auch die obere Hälfte von [mm] \partial B_{r}(0) [/mm] parametriert, und dann gesagt, dass
[mm] \limes_{r\rightarrow\infty} \integral_{\lambda_{r}}^{}{f(s) ds} [/mm] = 0 ist ( was du ja gesagt, dass das Integral über dem Kreisbogen gegen 0 strebt :-)), und dann gilt:
[mm] \limes_{r\rightarrow\infty}\integral_{-r}^{r}{f(t) dt} [/mm] = [mm] 2i\pi \summe_{a \in H}^{} Res_{a}f, [/mm] wobei H die obere Halbebene ist.
In meinem Fall muss ich  [mm] \bruch{1}{2}\limes_{r\rightarrow\infty}\integral_{-r}^{r}{f(t) dt} [/mm] = [mm] i\pi \summe_{a \in H}^{} Res_{a}f, [/mm] weil 0<t< [mm] \infty [/mm] ist. Bin ich da richtig, oder nicht?
Kannst du mir bitte sagen, wie ich jetzt genau das Integral ausrechne? Muss ich das ursprüngl Integral nehmen, oder die substituierte Version?
Wie bestimme ich jetzt von dem gegebenen Integranden das Residuum? Das Residuum ist ja der Koeffizient an der Stelle n= -1. Dazu brauch ich doch eine Reihe? Wie komm ich auf die?
Danke, milka


Bezug
                        
Bezug
Berechnung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 Fr 14.07.2006
Autor: Event_Horizon

Also, die Substitution habe ich gemacht, um die Nullstellen einfacher bestimmen zu können. Du rechnest mit t weiter!

Und ich habe [mm] $t^2=s$ [/mm]  substituiert. Wenn s=5 eine Lösung ist, ist die Lösung für t natürlich [mm] $t=+\wurzel{5}; [/mm] \ [mm] t=-\wurzel{5}$, [/mm] macht also bei 2 Lösungen für s genau 4 Lösungen für t. Einige Lösungen können natürlich auch z.B. doppelt vorkommen.


Was du zu dem Residuensatz sagst, ist vollkommen korrekt so. Der Kreisbogen fällt wegen dem Potenzgrad weg, und das übrige ist das doppelte von dem, was du jetzt willst.

Das Integral interessiert dich nicht mehr weiter. Du brauchst nun die Residuen Da du dich nur um die obere Halbebene kümmerst, brauchst du auch nur die Nullstellen zu behandeln, die im oberen Bereich liegen, also mit positivem Imaginärteil!

Nun berechnest du die Residuen.

Nimm dir eine Nullstelle. Welcher Ordnung ist sie, d.h. kommt sie nur einmal vor, oder öfter? Diese Zahl ist n.

[mm] $RES(f,t_0)=\bruch{d^{n-1}}{dt^{n-1}}(t-t_0)^n*f(t_0)$ [/mm]

Also: Wenn du den Nenner der Funktion durch die Linearfaktorzerlegung darstellst, lasse die Terme weg, die zu deiner Nullstelle gehören. Dann leitest du die Funktion ab, und zwar einmal weniger, als die Nullstelle vorkommt. Bei einfachen Nullstellen leitest du also garnicht ab.

Dann setzt du die Nullstelle sein, das gibt dir jetzt einen Funktionswert. DAS ist das Residuum.

Dieses Residuum berechnest du für alle Nullstellen im positiven imaginären Bereich einzeln, addierst die Residuen, dann noch den Faktor aus deinem Beitrag vornedran, UND DAS IST DER WERT DES INTEGRALS!

Bezug
                                
Bezug
Berechnung eines Integrals: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:52 Fr 14.07.2006
Autor: Milka_Kuh

Hallo,

danke nochmals für deine ausführliche Erklärung.

Ich betrachte also nur die  die beiden Nullstellen [mm] t_{1} [/mm] = [mm] \wurzel{-\bruch{1}{2}+\bruch{i}{2}\wurzel{3}} [/mm] und  [mm] t_{2} [/mm] = [mm] -\wurzel{-\bruch{1}{2}+\bruch{i}{2}\wurzel{3}}, [/mm] also die, die postiven Imaginärteil haben. Diese beiden Nullstellen haben doch jeweils die Ordnung 1, d.h. sie kommen doch jeweils nur einmal vor,also einfache Vielfachheit. Ich muss also gar nicht ableiten, oder?
Allerdings versteh ich diese Formel nicht, die du da angegeben hast:


$ [mm] RES(f,t_0)=\bruch{d^{n-1}}{dt^{n-1}}(t-t_0)^n\cdot{}f(t_0) [/mm] $

"Also: Wenn du den Nenner der Funktion durch die Linearfaktorzerlegung darstellst, lasse die Terme weg, die zu deiner Nullstelle gehören. Dann leitest du die Funktion ab, und zwar einmal weniger, als die Nullstelle vorkommt. Bei einfachen Nullstellen leitest du also garnicht ab."

Das Residuum muss ich also für diese beiden Nullstellen ausrechnen, und dann addieren, und mit [mm] 2i\pi [/mm] multiplizieren.

Danke, milka

Bezug
                                        
Bezug
Berechnung eines Integrals: Ergänzungsfrage dazu
Status: (Frage) beantwortet Status 
Datum: 23:57 Fr 14.07.2006
Autor: Milka_Kuh

Ich habe in der Zwischenzeit mal versucht, die Aufgabe ohne diese mir unbekannte Formel weiterzumachen. Wie schon oben erwähnt, behaupte ich, dass die Nullstellen einfache Ordnung haben.
Dann habe ich folgendes gemacht:

[mm] \limes_{r\rightarrow\infty} \integral_{0}^{r}{ \bruch{1}{t^{4}+t^{2}+1} dt} [/mm] = [mm] 4i\pi Res_{t_{1}}(\bruch{1}{z^{4}+z^{2}+1} )+4i\pi Res_{t_{2}}(\bruch{1}{z^{4}+z^{2}+1}) [/mm]

Es gilt die Rechenregel: [mm] Res_{a}(f) [/mm] =   [mm] \bruch{g^{(m-1}(a)}{(m-1)!}, [/mm] wenn f in a einen Pol m-ter Ordnung hat, etwa f(z) =  [mm] \bruch{g(z)}{(z-a)^{m}} [/mm] uma, g(a) [mm] \not= [/mm] 0, g holomorph.

Wie finde ich jetzt dieses g?

Bezug
                                                
Bezug
Berechnung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 02:22 Sa 15.07.2006
Autor: Event_Horizon

OOps, erstmal muß ich mich entschuldigen, in meiner Formel fehlt der Fakultätsterm.


Erstmal: Ich finde folgende Nullstellen des nenners (bzw das behauptet mein PC):

[mm] $\pm \bruch{1}{2} \pm [/mm] i [mm] \bruch{\wurzel{3}}{2}$ [/mm]

Diese vier Nullstellen sind in der Tat erster Ordnung. Uns interressiert nur [mm] $\pm \bruch{1}{2} [/mm] + i [mm] \bruch{\wurzel{3}}{2}$ [/mm]

Man kann den Integranden nun so schreiben:


[mm] \bruch{1}{(t-a_1)(t-a_2)(t-a_3)(t-a_4)} [/mm] wobei die [mm] a_i [/mm] die Nullstellen bzw eigentlich Polstellen sind.

Um das Residuum von [mm] a_1 [/mm] nun zu berechnen, wird die Funktion nun erstmal mit [mm] $(t-a_1)$ [/mm] multipliziert. Ist das eine Nullstelle höherer Ordnung, macht man das eben mehrmals, sodaß diese Nullstelle des Nenners dann weg ist. Die Funktion hat an der Stelle nun keinen Pol mehr, und ist dort definiert!

Du hast jetzt:

[mm] $\bruch{1}{(t-a_2)(t-a_3)(t-a_4)}$ [/mm] Das ist übrigens dein g

Wäre das jetzt eine Nullstelle höherer Ordnung m gewesen, müßtest du diesen Term nun ableiten (-> [mm] $g^{(m-1)}$) [/mm] und  durch den Fakultätsterm (m-1)! teilen, aber bei erster ordnung eben nicht.
Setze nun einfach die Nullstelle [mm] a_1 [/mm] für t ein, das geht ja jetzt:

[mm] $\bruch{1}{(a_1-a_2)(a_1-a_3)(a_1-a_4)}$ [/mm]

DAS ist das Residuum für [mm] a_1. [/mm]

Genauso berechnest du das Residuum für die zweite "oben liegende" Nullstelle.



Addiere die beiden Residuen, und multipliziere noch mit [mm] $4\pi [/mm] i$. Das ist dann der Wert des Integrals.

Ist es nun klarer geworden?

Bezug
                                                        
Bezug
Berechnung eines Integrals: Erneute Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:03 Sa 15.07.2006
Autor: Milka_Kuh

Hallo,

also ich habe nicht diese Nullstellen rausbekommen. Das kann doch auch nicht stimmen, denn in deiner allerersten Antwort hast du geschrieben: Die Nullstellen von [mm] s^{2}+s+1=0 [/mm] sind [mm] s_{1,2}= -\bruch{1}{2} \pm i\wurzel{\bruch{3}{4}} [/mm] also:
[mm] s_{1}= -\bruch{1}{2} [/mm] + [mm] \bruch{i}{2}\wurzel{3} [/mm] und
[mm] s_{2}= -\bruch{1}{2} [/mm] - [mm] \bruch{i}{2}\wurzel{3} [/mm]

Da ich man nun eine Substitution von [mm] t^{2}= [/mm] s gemacht hat, muss man, wenn man die Nullstellen als t bezeichnen will(Resubstitution), doch jeweils aus diesen [mm] s_{1,2} [/mm] die Wurzel ziehen, also erhalte ich:
[mm] t_{1} [/mm] = [mm] \pm \wurzel{s_{1}} [/mm] und
[mm] t_{2} [/mm] =  [mm] \pm \wurzel{s_{2}} [/mm]

Dein PC hat scheinbar die Wurzel vergessen... Oder leig ich da falsch?

G>ruß, milka

Bezug
                                                                
Bezug
Berechnung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 12:16 Sa 15.07.2006
Autor: Event_Horizon

Ich hab meinem PC eigentlich die originalformel gegeben.

Schaun wir mal:

[mm] $t^2=\left( \bruch{1}{2}+ i \bruch{\wurzel{3}}{2} \right)^2=\bruch{1}{4}+2*i\left( \bruch{1}{2} \bruch{\wurzel{3}}{2} \right)- \bruch{3}{4}=-\bruch{1}{2}+i \bruch{\wurzel{3}}{2}=s$ [/mm]

In der Tat bleiben die einzelnen Zahlen gleich, nur bei den Vorzeichen tut sich was.

Du mußt deine Wurzel auch ausrechnen!

Bezug
                                                                        
Bezug
Berechnung eines Integrals: Endergebnis richtig?
Status: (Frage) beantwortet Status 
Datum: 13:57 Sa 15.07.2006
Autor: Milka_Kuh

Hallo,

ich habe jetzt auch dieselben Nullstellen bzw. Polstellen, nämlich:

[mm] a_{1} [/mm] = [mm] \bruch{1}{2} [/mm] + [mm] \bruch{i}{2}\wurzel{3} [/mm]
[mm] a_{2} [/mm] = [mm] -\bruch{1}{2} [/mm] + [mm] \bruch{i}{2}\wurzel{3} [/mm]

und für die später benötigte Berechnung die beiden anderen:
[mm] a_{3} [/mm] = [mm] \bruch{1}{2} [/mm] - [mm] \bruch{i}{2}\wurzel{3} [/mm]
[mm] a_{4} [/mm] = [mm] -\bruch{1}{2} [/mm] - [mm] \bruch{i}{2}\wurzel{3} [/mm]

Jetzt habe ich einmal das Res für [mm] a_{1}, [/mm] und dann das Res für [mm] a_{2} [/mm] ausgerechnet:
für [mm] a_{1}: \bruch{1}{(a_{1}-a_{2})(a_{1}-a_{3})(a_{1}-a_{4})}=... [/mm] einsetzen und ausrechnen...= [mm] \bruch{1}{i\wurzel{3}-3} [/mm]  

und analog für [mm] a_{2}: \bruch{1}{(a_{2}-a_{1})(a_{2}-a_{3})(a_{2}-a_{4})}=...= \bruch{1}{i\wurzel{3}+3} [/mm]

Also addiere ich beides: [mm] \bruch{1}{i\wurzel{3}-3} [/mm] + [mm] \bruch{1}{i\wurzel{3}+3} [/mm] = [mm] -\bruch{1}{6}i\wurzel{3} [/mm]

Dann mit [mm] 4i\pi [/mm] malnehmen: [mm] 4i\pi (-\bruch{1}{6}i\wurzel{3}) [/mm] = [mm] \bruch{2\pi}{\wurzel{3}} [/mm]

Stimmt das jetzt? :-)

Danke! milka

Bezug
                                                                                
Bezug
Berechnung eines Integrals: Fast! 2pi statt 4pi
Status: (Antwort) fertig Status 
Datum: 14:25 Sa 15.07.2006
Autor: Event_Horizon

Fast.

Du hast oben irgendwo mit [mm] $4\pi [/mm] i$ angefangen... Ich hatte oben noch [mm] $2\pi [/mm] i$ stehen. Habs dann weiter von dir übernommen.


Du mußt mit [mm] $2\pi [/mm] i$ statt [mm] $4\pi [/mm] i$ multiplizieren, dann stimmt das Ergebnis auch!


Und vergiß nicht, das ist das Integral über die gesamte t-Achse, du brauchst ja nur die Hälfte, ab t=0!

Bezug
                                                                                        
Bezug
Berechnung eines Integrals: Danke. Stimmts endlich?
Status: (Frage) beantwortet Status 
Datum: 15:46 Sa 15.07.2006
Autor: Milka_Kuh

Hallo,

na das war ja echt ne schwere Geburt... :-) Mit [mm] 2i\pi [/mm] malgenommen, ergibt: [mm] \bruch{1}{3}\pi\wurzel{3}, [/mm] dann noch die Hälfte davon ergibt: [mm] \bruch{1}{6}\pi\wurzel{3} [/mm]

Fertig.
Danke!!!
Milka

Bezug
                                                                                                
Bezug
Berechnung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Sa 15.07.2006
Autor: Event_Horizon

Weißt du, wie das mit den Residuen funktioniert, weiß ich. Allerdings, wenn ich rechne, sind bei mir 80% falsch...

Bezug
                                                                                                        
Bezug
Berechnung eines Integrals: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:11 Sa 15.07.2006
Autor: Milka_Kuh

Hallo,

dann poste doch bitte mal deine Lösung, damit ich auch sehen kann, was du hast und dadurch ein besserer Vergleich stattfinden kann... Wenn du das so hinknallst, wer weiß, was wir unterschiedlich haben.

Gruß, milka

Bezug
                                                                                                                
Bezug
Berechnung eines Integrals: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:26 Sa 15.07.2006
Autor: Event_Horizon

Keine Sorge, was du gerechnet hast, ist schon korrekt so.

Ich habe ehrlich gesagt zur Überprüfung einfach meinen Computer benutzt, dann schleichen sich zumindest keine Rechenfehler ein.

Ich meine halt nur, als ich mich mit Residuen beschäftigt habe, und das auch alles zu Fuß ausgerechnet habe, habe ich meistens ganz was anderes raus bekommen, als was mein PC mir als Lösung angab.

Bezug
                                        
Bezug
Berechnung eines Integrals: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Do 20.07.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de