www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Berechnung eines Integrals
Berechnung eines Integrals < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung eines Integrals: Korrektur, Hilfe
Status: (Frage) beantwortet Status 
Datum: 21:08 Mi 27.07.2011
Autor: Carlo

Aufgabe
Berechnen Sie das unbestimmte Integral:


[mm] \integral_{}^{}{ \bruch{x^4-x^3-5x-4}{x^3-x^2-2x} dx} [/mm]

Ich habe die Polynomdivision angewendet und bin auf folgendes gekommen :

1x + [mm] \bruch{2x^2-5x-4}{x^3-x^2-2x} [/mm]

Die Nullstellen: [mm] x_1= [/mm] 0 ; [mm] x_2= \bruch{3}{2} [/mm] ; [mm] x_3= [/mm] -1


Jetzt habe ich versucht die Partialbruchzerlegung anzuwenden:

[mm] \bruch{2x^2-5x-4}{(x- \bruch{3}{2}) * (x+ 1)} [/mm] = [mm] \bruch{A}{x} [/mm] + [mm] \bruch{B}{(x- \bruch{3}{2})} [/mm] + [mm] \bruch{C}{(x+1)} [/mm]

So und hier fängt das Problem an, wann muss ich [mm] \bruch{Bx+C}{....} [/mm] verwenden und wann [mm] \bruch{B}{...} [/mm] + [mm] \bruch{C}{...} [/mm] ??


        
Bezug
Berechnung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Mi 27.07.2011
Autor: leduart

Hallo
wenn du eine nicht reelle Nst. hast dan schreibst du bei dem quadratischen nenner A+Bx im Zähler. sonst nirgends
Gruss leduart


Bezug
                
Bezug
Berechnung eines Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:19 Mi 27.07.2011
Autor: Carlo

Achso okay, danke :-)

Ist mein Ansatz so richtig ? Muss ich denn jetzt nur noch A,B und C berechnen, wobei da hatte ich auch Probleme....Ich schreibe mal die Rechenschritte auf:

[mm] \bruch{2x^2-5x-4}{(x- \bruch{3}{2} * (x+1)} [/mm] = [mm] \bruch{A}{x} [/mm] + [mm] \bruch{B}{(x- \bruch{3}{2}} [/mm] + [mm] \bruch{C}{(x+1)} [/mm]   | *(x - [mm] \bruch{3}{2}) [/mm] (x+1)

[mm] 2x^2-5x-4 [/mm] = [mm] Ax^2- \bruch{1}{2} [/mm] A - [mm] \bruch{3}{2} [/mm] A + Bx + B + Cx - [mm] \bruch{3}{2} [/mm] C

Jetzt wollte ich den Koeffizientenvergleich durchführen, also:

A= 2
B+C= -5
?? (ich weiß nicht, wie ich das mit A+B+C machen soll)

Bezug
                        
Bezug
Berechnung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 21:33 Mi 27.07.2011
Autor: MathePower

Hallo Carlo,

> Achso okay, danke :-)
>  
> Ist mein Ansatz so richtig ? Muss ich denn jetzt nur noch
> A,B und C berechnen, wobei da hatte ich auch
> Probleme....Ich schreibe mal die Rechenschritte auf:
>  
> [mm]\bruch{2x^2-5x-4}{(x- \bruch{3}{2} * (x+1)}[/mm] = [mm]\bruch{A}{x}[/mm]
> + [mm]\bruch{B}{(x- \bruch{3}{2}}[/mm] + [mm]\bruch{C}{(x+1)}[/mm]   | *(x -
> [mm]\bruch{3}{2})[/mm] (x+1)


Der Ansatz muss doch lauten:

[mm]\bruch{2x^2-5x-4}{\blue{x}*(x- \red{\bruch{3}{2}}) * (x+1)}=\bruch{A}{x} + \bruch{B}{(x- \red{\bruch{3}{2}})} + \bruch{C}{(x+1)}[/mm]

Die rot markierte Zahl stimmt nicht.


>
>  
> [mm]2x^2-5x-4[/mm] = [mm]Ax^2- \bruch{1}{2}[/mm] A - [mm]\bruch{3}{2}[/mm] A + Bx + B
> + Cx - [mm]\bruch{3}{2}[/mm] C
>  
> Jetzt wollte ich den Koeffizientenvergleich durchführen,
> also:
>  
> A= 2
>  B+C= -5
>  ?? (ich weiß nicht, wie ich das mit A+B+C machen soll)  


Gruss
MathePower

Bezug
                                
Bezug
Berechnung eines Integrals: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:37 Mi 27.07.2011
Autor: Carlo

Vielen Dank :-)

Ich habe das x vergessen, aber nehmen wir an, es würde eine Zahl oben in der Funktion stehen, also:


5+ [mm] \bruch{2x^2 - 5x-4}{x^3 -x^2 -2x} [/mm] müsste ich dann anstelle von x diese Zahl dahinschreiben ??

Bezug
                                        
Bezug
Berechnung eines Integrals: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:47 Mi 27.07.2011
Autor: MathePower

Hallo Carlo,

> Vielen Dank :-)
>  
> Ich habe das x vergessen, aber nehmen wir an, es würde
> eine Zahl oben in der Funktion stehen, also:
>  
>
> 5+ [mm]\bruch{2x^2 - 5x-4}{x^3 -x^2 -2x}[/mm] müsste ich dann
> anstelle von x diese Zahl dahinschreiben ??


Ich habe das "x" im Nennerpolynom gemeint.


Gruss
MathePower

Bezug
                                
Bezug
Berechnung eines Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Mi 27.07.2011
Autor: Carlo

Vielen Dank :-)

Ich habe das x vergessen, aber nehmen wir an, es würde eine Zahl oben in der Funktion stehen, also:


5+ [mm] \bruch{2x^2 - 5x-4}{x^3 -x^2 -2x} [/mm] müsste ich dann anstelle von x diese Zahl dahinschreiben ????


Bezug
                                        
Bezug
Berechnung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Mi 27.07.2011
Autor: MathePower

Hallo Carlo,

> Vielen Dank :-)
>  
> Ich habe das x vergessen, aber nehmen wir an, es würde
> eine Zahl oben in der Funktion stehen, also:
>  
>
> 5+ [mm]\bruch{2x^2 - 5x-4}{x^3 -x^2 -2x}[/mm] müsste ich dann
> anstelle von x diese Zahl dahinschreiben ????
>  

Ich das "x" im Nennerpolynom gemeint, das Du
beim Faktorisieren desselbigen vergessen hast.


Gruss
MathePower

Bezug
                                                
Bezug
Berechnung eines Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Mi 27.07.2011
Autor: Carlo

Aber nehmen wir an, dass die Aufgabe wie oben dargestellt aussieht, wo müsste dann letzendlich die 5 eingebaut werden ?

Bezug
                                                        
Bezug
Berechnung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Mi 27.07.2011
Autor: schachuzipus

Hallo Carlo,


> Aber nehmen wir an, dass die Aufgabe wie oben dargestellt
> aussieht, wo müsste dann letzendlich die 5 eingebaut
> werden ?

Das Integral ist ja additiv, es ist also

[mm]\int{5+\text{Bruch} \ dx} \ = \ \int{5 \ dx} \ + \ \int{\text{Bruch} \ dx}[/mm]

Du kannst die Integrale dann getrennt berechnen, das erste ist einfach, für das zweite verfahre wie im thread (Polynomdivision, wenn nötig, Partialbruchzerlegung oder was auch immer nötig ist) ...

Gruß

schachuzipus


Bezug
                                                                
Bezug
Berechnung eines Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:14 Do 28.07.2011
Autor: Carlo

Ich habe mal eine Frage, undzwar, wenn ich jetzt folgende Nullstellen habe:

[mm] x_1_/_2 [/mm] = 0

[mm] x_3_/_4 [/mm] = 1


müsste doch mein Ansatz so sein :


A/x + [mm] B/x^2 [/mm] + C/(x-1) + [mm] D/(x-1)^2 [/mm] oder ?

Bezug
                                                                        
Bezug
Berechnung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Do 28.07.2011
Autor: angela.h.b.


> Ich habe mal eine Frage, undzwar, wenn ich jetzt folgende
> Nullstellen habe:
>  
> [mm]x_1_/_2[/mm] = 0
>  
> [mm]x_3_/_4[/mm] = 1

Hallo,

Du redest also über den Nenner [mm] x^2(x-1)^2. [/mm]

>  
>
> müsste doch mein Ansatz so sein :
>  
>
> A/x + [mm]B/x^2[/mm] + C/(x-1) + [mm]D/(x-1)^2[/mm] oder ?

Ja, wenn der Zählergrad kleiner als der Nennergrad ist.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de