www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Berechnung vom Wert t
Berechnung vom Wert t < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung vom Wert t: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:13 So 25.05.2008
Autor: CheckMatrix

Aufgabe
Hi an alle..Komme gerade nicht weiter...

K von t ist das Schaubild der Funktion f von t mit f von t(x)=1/t-4mal x³+tx wobei x das Element der reelen Zahlen sein soll, t ungleich4.
Das Schaubild K von t schließt mit der x-Achse im 1. Quadranten für 0<t<4 eine Fläche mit dem Inhalt A(t) ein. Bestimmen sie A(t).
Für welchen Wert t wird der Flächeninhalt maximal?
Berechnen sie den größten Flächeninhalt.

So das waren meine Fragen. Hab mir gedacht intergriere zwischen 0 bis t und dann zwischen t bis 4. So nun kapiere ich nicht was da mit maximal gemeint ist..Wie soll ich das wählen?? hilfe. Naja und wenn ich t habe dann kann ich auch den Flächeninhalt ausrechen.. Ist mit t eventuell was kurz vor 4 gemeint?? fragen über fragen


gruß

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Berechnung vom Wert t: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 So 25.05.2008
Autor: VNV_Tommy

Hallo CheckMatrix,

zunächst mal ein herzliches [willkommenmr]

> Hi an alle..Komme gerade nicht weiter...
>  
> K von t ist das Schaubild der Funktion f von t mit f von
> t(x)=1/t-4mal x³+tx wobei x das Element der reelen Zahlen
> sein soll, t ungleich4.
>  Das Schaubild K von t schließt mit der x-Achse im 1.
> Quadranten für 0<t<4 eine Fläche mit dem Inhalt A(t) ein.
> Bestimmen sie A(t).
>  Für welchen Wert t wird der Flächeninhalt maximal?
>  Berechnen sie den größten Flächeninhalt.
>  
> So das waren meine Fragen. Hab mir gedacht intergriere
> zwischen 0 bis t und dann zwischen t bis 4. So nun kapiere
> ich nicht was da mit maximal gemeint ist..Wie soll ich das
> wählen?? hilfe. Naja und wenn ich t habe dann kann ich auch
> den Flächeninhalt ausrechen.. Ist mit t eventuell was kurz
> vor 4 gemeint?? fragen über fragen

Also im Ansatz sind deine Überlegungen nicht ganz gut, es fehlt nur der zündende Funke. ;-)

Du hast es bei deiner Funktion mit einer Funktionsschaar zu tun. Das bedeutet, dass je nach dem wie der Parameter t gewählt wird, deine Funktion eine unterschiedliche Lage haben wird. Deshalb verändert sich auch der Flächeninhalt, den die Kruve mit der x-Achse einschließt, wenn du t veränderst. Soweit verständlich?

Du sollst nun zunächst eine allgemeine Flächeninhaltsformel A(x) für den gegebenen Sachverhalt aufstellen. Das ist im Grunde nicht schwer, da du eigentlich nur allgemein die Fläche von K im ersten Quadranten bestimmen musst. Die Fläche wird höchstwahrscheinlich durch zwei Nullstellen der Funktion begrenzt: diese musst du zunächst ermitteln (Nullstellenberechnung sollte klar sein). Die ermittelten Nullstellen stellen Ober- und Untergrenze deines Integrals dar.

Nun ermittelst du allgemein den Flächeninhalt, indem du das Integral der Funktion in den Grenzen (eben ermittelte Nullstellen) bestimmst. Aufgrund der Funktionsschar wird sicher eine allgemeine Formel entstehen, welche den Parameter t enthält. Das ist A(t). Wenn du diese Formel ermittelt hast, hast du schon die Hälfte der Aufgabe gelöst.

Die Fläche A(t) wird dann maximal, wenn A'(t)=0 und A''(t)<0 (einfach Extremwertaufgabe). Du musst also nur die ersten beiden Ableitungen deiner eben ermittelten Flächeninhaltsfunktion A(t) ermitteln und deren Extrempunkte bestimmen (das sollte nicht allzu schwer werden, wenn man sich an die Regelen der Differentiation erinnert ;-) ).

Probier mal das nachzuvolziehen und umzusetzen. Wenn du trotzdem noch Fragen hast, dann her damit.

Gruß,
Tommy

Bezug
                
Bezug
Berechnung vom Wert t: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:55 So 25.05.2008
Autor: CheckMatrix

Aufgabe
also hab für die nullstellen einmal 0 raus und einmal t-2

so hab integriert und dann als A(t)=4-2t raus..
meine frage: davon soll ich ableitungen machen??
erste funkt noch aber bei der zweiten kommt 0...oder doch von der grundformel...

also hab für die nullstellen einmal 0 raus und einmal t-2

so hab integriert und dann als A(t)=4-2t raus..
meine frage: davon soll ich ableitungen machen??
erste funkt noch aber bei der zweiten kommt 0...oder doch von der grundformel...


Bezug
                        
Bezug
Berechnung vom Wert t: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:10 Mo 26.05.2008
Autor: steppenhahn

Könntest du deine Funktion eventuell nochmal mit dem Formeleditor schreiben?
Wenn ich

[mm]f_{t}(x) = \bruch{1}{t} -4*x^{3}+t*x[/mm]

als Funktion nehme, komme ich auf andere Nullstellen als du. Aber auch wenn ich

[mm]f_{t}(x) = \left(\bruch{1}{t} -4\right)*x^{3}+t*x[/mm]

nehme, kommt nicht dasselbe heraus. Welche Funktion meinst du?


Bezug
                                
Bezug
Berechnung vom Wert t: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:27 Mo 26.05.2008
Autor: CheckMatrix

Aufgabe
$ [mm] f_{t}(x) [/mm] = [mm] \bruch{1}{t-4}\cdot{}x^{3}+t\cdot{}x [/mm] $

$ [mm] f_{t}(x) [/mm] = [mm] \bruch{1}{t-4}\cdot{}x^{3}+t\cdot{}x [/mm] $

Bezug
                                        
Bezug
Berechnung vom Wert t: Antwort
Status: (Antwort) fertig Status 
Datum: 16:21 Mo 26.05.2008
Autor: Sigrid

Hallo CheckMatrix,

> [mm]f_{t}(x) = \bruch{1}{t-4}\cdot{}x^{3}+t\cdot{}x[/mm]
>  [mm]f_{t}(x) = \bruch{1}{t-4}\cdot{}x^{3}+t\cdot{}x[/mm]

also hab für die nullstellen einmal 0 raus und einmal t-2

Die Berechnung Deiner Nullstellen ist nicht korrekt.

$ [mm] \bruch{1}{t-4}\cdot{}x^{3}+t\cdot{}x [/mm] = 0 $

$ [mm] \gdw x^3 [/mm] + [mm] (t^2 [/mm] - 4t) [mm] \cdot [/mm] x = 0 $

$ [mm] \gdw x(x^2 [/mm] + [mm] t^2 [/mm] - 4t) = 0 $

$ [mm] \gdw [/mm] x=0 [mm] \vee x^2 [/mm] = 4t - [mm] t^2 [/mm] $

$ [mm] \gdw [/mm] x=0 [mm] \vee [/mm] x = [mm] \pm \wurzel{4t - t^2} [/mm] $

Du musst jetzt von 0 bis $ [mm] \wurzel{4t - t^2} [/mm] $ integrieren. So bekommst Du die Zielfunktion.

Gruß
Sigrid



so hab integriert und dann als A(t)=4-2t raus..

meine frage: davon soll ich ableitungen machen??
erste funkt noch aber bei der zweiten kommt 0...oder doch von der grundformel...


Bezug
                                                
Bezug
Berechnung vom Wert t: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 Mo 26.05.2008
Autor: CheckMatrix

f(x)=1/t-4 mal x³ +tx
die setze ich auf null

0=1/t-4 mal x³ +tx   ====> x=0
0=1/t-4 mal x² +t
nun stelle ich um auf x
x²=t²-4
DARAUS DIE WURZEL
x=t-2

irgendwas falsch??

Bezug
                                                        
Bezug
Berechnung vom Wert t: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Mo 26.05.2008
Autor: Sigrid

Hallo CheckMatrix,

> f(x)=1/t-4 mal x³ +tx
>  die setze ich auf null
>  
> 0=1/t-4 mal x³ +tx   ====> x=0
>  0=1/t-4 mal x² +t
> nun stelle ich um auf x
>  x²=t²-4
>  DARAUS DIE WURZEL
>  x=t-2

Vorsicht: Aus einer Summe darfst Du nicht gliedweise die Wurzel ziehen!

>  
> irgendwas falsch??

Leider ja.

$ 0= [mm] \bruch{1}{t-4} \cdot [/mm] x² +t $

Wenn Du jetzt mit $ t-4 $ multiplizierst, erhälst Du:

$ 0=  x² +t [mm] \cdot(t-4) [/mm] $

bzw.

$ 0=  x² - t [mm] \cdot(4-t) [/mm] $

Ist es jetzt klarer?

Gruß
Sigrid



Bezug
                                                                
Bezug
Berechnung vom Wert t: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:00 Mo 26.05.2008
Autor: CheckMatrix

Aufgabe
aus der summe kürzt der dumme ;-)

aus der summe kürzt der dumme ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de