www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Berechnung von Gewichten
Berechnung von Gewichten < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung von Gewichten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:53 Mi 08.12.2010
Autor: janisE

Aufgabe
a)
Gegeben seien zwei Zufallsvariablen X und Y auf einen Wahrscheinlichkeitsraum [mm] (\Omega,\mathcal{F},\mathcal{P}) [/mm] mit Werten in [mm] \IZ [/mm]und Gewichten

[mm] p_X(k) := P(\{X = k \}), p_Y(k) := P(\{Y = k \}) \forall k \in \IZ [/mm]

Bestimmen Sie bei Annahme der Unabhängigkeit von X und Y eine allgemeine Formel für die Gewichte der ZV S := X + Y.

b)
Seien [mm] \lambda_1,\lambda_2 [/mm] zwei unabhängig Poisson([mm] \lambda_1 [/mm]) bzw. Poisson([mm] \lambda_2 [/mm]) verteilte Zufallsvariablen. Bereichen Sie die Verteilung (Gewichte) von S := X + Y.

Hinweis: Verwenden Sie die Formel aus a)


Hallo!

Bisher habe ich mir nur die a) angesehen, da ich die b) ohne das Ergebnis aus a) nicht machen kann...

zur a)

Was ich mir zur Aufgabe überlegt habe: Die ZV X und Y sind gegeben, und ich suche also [mm] p_S(k) = P(\{S = k\}) = P(\{(X+Y) = k\}) [/mm] und muss versuchen irgendwie durch Umformen [mm] p_S(k) [/mm] über [mm] p_X(k) [/mm] und [mm] p_Y(k) [/mm] auszudrücken, richtig?

Also, [mm] P(\{(X+Y) = k\}) = \sum\limits_{i=0}^k P(X = k) \cdot P(Y = k - i) = \sum\limits_{i=0}^k p_X(k) \cdot p_Y(k)[/mm]

Stimmt das so weit bzw. war es das?

Danke!



        
Bezug
Berechnung von Gewichten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:43 Do 09.12.2010
Autor: janisE

Hallo!

Könnt ihr mir bitte sagen, ob mein Ansatz korrekt ist?

Vielen Dank!


Bezug
        
Bezug
Berechnung von Gewichten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Fr 10.12.2010
Autor: ullim

Hi,

> zur a)
>  
> Was ich mir zur Aufgabe überlegt habe: Die ZV X und Y sind
> gegeben, und ich suche also [mm]p_S(k) = P(\{S = k\}) = P(\{(X+Y) = k\})[/mm]
> und muss versuchen irgendwie durch Umformen [mm]p_S(k)[/mm] über
> [mm]p_X(k)[/mm] und [mm]p_Y(k)[/mm] auszudrücken, richtig?
>  
> Also, [mm]P(\{(X+Y) = k\}) = \sum\limits_{i=0}^k P(X = k) \cdot P(Y = k - i) = \sum\limits_{i=0}^k p_X(k) \cdot p_Y(k)[/mm]
>  
> Stimmt das so weit bzw. war es das?
>  

Ich glaube Du bist mit den Indizes etwas durcheinander gekommen. Richtig ist

[mm] P(\{(X+Y)=k\})=\sum\limits_{i=0}^k P(X=i)\cdot P(Y=k-i)=\sum\limits_{i=0}^k p_X(i) \cdot p_Y(k-i) [/mm]

denn die Summe muss ja immer noch k ergeben.

  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de