www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Berechnung von Interpolationsp
Berechnung von Interpolationsp < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung von Interpolationsp: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 13:00 Mi 25.04.2012
Autor: Balodil

Aufgabe
Berechne das Interpolationspolynom [mm] p_{3} [/mm] zu den Daten
i   1    2    3   4
[mm] x_{i} [/mm]  -1    1    2   3
[mm] y_{i} [/mm]  -2    0    1   10

(i) mit Lagrangepolynomen und
(ii) mithilfe dividierter Differenzen

Bringe das Polynom jeweils in die Standradform [mm] p_{3} [/mm] = [mm] \summe_{j=0}^{3} a_j x^j. [/mm] Aus welcher der beiden Rechnung lässt sich direkt ein Polynom [mm] p_{2} [/mm] /in [mm] II_{2} [/mm] ablesen, das durch die Punkte [mm] (x_{j},y_{j}) [/mm] j = 0,1,2 geht? Gib auch dieses Polynom an.

Halli Hallo!

Zur (i)
Also das ist soweit alles klar, ich habe meine [mm] L_{i} [/mm] berechnet und dann das Polynom mit y-Werten aufgestellt
[mm] p_{3} [/mm] = [mm] x^3 [/mm] - [mm] 2x^2 [/mm] + 1

Zur (ii)
Auch hier soweit alles klar, ich habe das Tableu aufgestellt und die [mm] a_{i} [/mm] berechnet
[mm] a_{0} [/mm] = -2  [mm] a_{1} [/mm] = 1  [mm] a_{2} [/mm] = 0  [mm] a_{3} [/mm] = 1
Dann ins Polynom eingesetzt [mm] p_{3} [/mm] = [mm] a_{0} [/mm] + [mm] (x-x_{0}) a_{1} [/mm] + usw.
Da kommt dann raus [mm] x^3 [/mm] - [mm] 2x^2 [/mm] + 1
Also dasselbe wie oben, macht ja auch Sinn.

So wo ich jetzt aber nicht wieter komme ist:
Die Polynome auf Standardform bringen, da versteht ich nicht so recht wie ich das a bestimmen sollen.

VIelen Dank! :)

lg
Balodil

        
Bezug
Berechnung von Interpolationsp: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Mi 25.04.2012
Autor: fred97


> Berechne das Interpolationspolynom [mm]p_{3}[/mm] zu den Daten
>   i   1    2    3   4
>  [mm]x_{i}[/mm]  -1    1    2   3
>  [mm]y_{i}[/mm]  -2    0    1   10
>  
> (i) mit Lagrangepolynomen und
>  (ii) mithilfe dividierter Differenzen
>  
> Bringe das Polynom jeweils in die Standradform [mm]p_{3}[/mm] =
> [mm]\summe_{j=0}^{3} a_j x^j.[/mm] Aus welcher der beiden Rechnung
> lässt sich direkt ein Polynom [mm]p_{2}[/mm] /in [mm]II_{2}[/mm] ablesen,
> das durch die Punkte [mm](x_{j},y_{j})[/mm] j = 0,1,2 geht? Gib auch
> dieses Polynom an.
>  Halli Hallo!
>  
> Zur (i)
>  Also das ist soweit alles klar, ich habe meine [mm]L_{i}[/mm]
> berechnet und dann das Polynom mit y-Werten aufgestellt
>  [mm]p_{3}[/mm] = [mm]x^3[/mm] - [mm]2x^2[/mm] + 1
>  
> Zur (ii)
>  Auch hier soweit alles klar, ich habe das Tableu
> aufgestellt und die [mm]a_{i}[/mm] berechnet
>  [mm]a_{0}[/mm] = -2  [mm]a_{1}[/mm] = 1  [mm]a_{2}[/mm] = 0  [mm]a_{3}[/mm] = 1
>  Dann ins Polynom eingesetzt [mm]p_{3}[/mm] = [mm]a_{0}[/mm] + [mm](x-x_{0}) a_{1}[/mm]
> + usw.
>  Da kommt dann raus [mm]x^3[/mm] - [mm]2x^2[/mm] + 1
>  Also dasselbe wie oben, macht ja auch Sinn.
>  
> So wo ich jetzt aber nicht wieter komme ist:
>  Die Polynome auf Standardform bringen, da versteht ich
> nicht so recht wie ich das a bestimmen sollen.

Meinst Du die Koeff. [mm] a_j [/mm] in

             $ [mm] p_{3}(x) [/mm]  =  [mm] \summe_{j=0}^{3} a_j x^j [/mm] $ ?

Das schreiben wir mal aus:

              [mm] $p_3(x)=a_0+a_1*x+a_2*x^2+a_3*x^3$ [/mm]

und vergleichen mit Deinem Resultat:


            
                 $ [mm] p_{3}(x) [/mm] = [mm] 1+0*x+(-2)*x^2+1*x^3$ [/mm]

Merkst Du was ?

FRED

>  
> VIelen Dank! :)
>  
> lg
> Balodil


Bezug
                
Bezug
Berechnung von Interpolationsp: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:53 Mi 25.04.2012
Autor: Balodil

Oh okay.
So hatte ich mir das auch gedacht, aber ich hatte nach einem allgemeinen [mm] \alpha [/mm] gesucht :S, das dieses Polynom erfüllt.

Danke schön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de