Berechnungen eines Tetraeders < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Aufgabe | "Stelle eine Formel für das Volumen V und den Oberflächeninhalt O eines Tetraeders mit der Kantenlänge a auf. Zur Erinnerung: Ein Tetraeder ist eine dreiseitige Pyramide, bei der die Seitenkante s genauso lang ist wie die Grundkante a." |
In der Schule haben wir die Höhe der Grundfläche (h') und die Grundfläche (G) bereits ausgerechnet. Soweit habe ich es noch verstanden. Die Ergebnisse sind: [mm] h'=\bruch{\wurzel{3}}{2}*a [/mm] G= [mm] \bruch{1}{2}*a [/mm] *h'= [mm] \bruch{\wurzel{3}}{4}*a²
[/mm]
für die Höhe der Pyramide, also h haben wir [mm] \bruch{\wurzel{8}}{3}* [/mm] h' aufgeschrieben. Diesen Schritt verstehe ich nicht. Kann mir jemand helfen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:21 Di 03.02.2009 | Autor: | abakus |
> "Stelle eine Formel für das Volumen V und den
> Oberflächeninhalt O eines Tetraeders mit der Kantenlänge a
> auf. Zur Erinnerung: Ein Tetraeder ist eine dreiseitige
> Pyramide, bei der die Seitenkante s genauso lang ist wie
> die Grundkante a."
> In der Schule haben wir die Höhe der Grundfläche (h') und
> die Grundfläche (G) bereits ausgerechnet. Soweit habe ich
> es noch verstanden. Die Ergebnisse sind:
> [mm]h'=\bruch{\wurzel{3}}{2}*a[/mm] G= [mm]\bruch{1}{2}*a[/mm] *h'=
> [mm]\bruch{\wurzel{3}}{4}*a²[/mm]
>
> für die Höhe der Pyramide, also h haben wir
> [mm]\bruch{\wurzel{8}}{3}*[/mm] h' aufgeschrieben. Diesen Schritt
> verstehe ich nicht. Kann mir jemand helfen?
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Hallo,
die Spitze des (regelmäßigen!) Tetraeders steht genau über dem Mittelpunkt der Grundfläche.
Die Grundfläche ist ein gleichseitiges Dreieck, und im gleichseitigen Dreieck sind Winkelhalbierende, Höhen, Mittelsenkrecht und Seitenhalbierende identisch. Von den Seitenhalbierenden weiß man (oder sollte man wissen), dass der Schnittpunkt der Seitenhalbierenden jede Seitenhalbierende im Verhältnis 2:1 teilt.
Ein Eckpunkt der Grundfläche, der Mittelpunkt der Grundfläche und die Spitze des Tetraeders bilden deshalb ein rechtwinkliges Dreieck mit den Seitenlängen a, h und [mm] \bruch{2}{3}h'.
[/mm]
Gruß Abakus
|
|
|
|
|
Ahh, jetzt ist es mir klar. Ich hatte das Verhältnis vergessen und somit auch das rechtwinklige Dreieck nicht gesehen. Vielen Dank.
|
|
|
|