www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Bernoulli-Kette
Bernoulli-Kette < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoulli-Kette: Idee
Status: (Frage) beantwortet Status 
Datum: 17:25 Do 26.03.2009
Autor: LK2010

Aufgabe
Eine Firma liefert Ventile an einen Händler. Sie garantiert dabei, dass höchstens 5% defekt sind, ansonsten schickt der Händler die Ware zurück. Bei 30 Stichproben dürfen nur k defekt sein, ansonsten werden die Ventile vom Händer nicht angenommen. Bei welchem Wert für k ist es in höchstens 3% der Lieferungen falsch, die Ventile nicht anzunehmen.  

Hey,
ich schreibe bald Klausur und brauche hilfe bei solchen Aufgaben.
Ich hoffe mal, dass ich richtig erkannt habe, dass es sich um eine Bernoulli-Kette handelt, also:
[mm] P(X=k)=\vektor{n\\k}*p^{k}*q^{n-k} [/mm]

X=Anzahl der defekten Ventile

X ist [mm] B_{30; 0,05} [/mm] - verteilt

In die Formel eingesetzt also:
[mm] P(X=k)=\vektor{30\\k}*0,05^{k}*0,95^{30-k} [/mm]

Jetzt komme ich nicht mehr weiter, weil ich nicht weiß, wie ich die Information:
"Bei welchem Wert für k ist es in höchstens 3% der Lieferungen falsch, die Ventile nicht anzunehmen."
miteinbringen kann.

Lg =)


        
Bezug
Bernoulli-Kette: Nachgefragt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:33 Do 26.03.2009
Autor: Zwerglein

Hi, LK2010,

sagt Dir das Stichwort "Hypothesentest" etwas?

mfG!
Zwerglein

Bezug
                
Bezug
Bernoulli-Kette: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:41 Do 26.03.2009
Autor: LK2010

Nein, es sagt mir so nichts.
So welche Aufgaben haben wir manchmal mit Binomialverteilungs Tabellen gelöst.

Bezug
        
Bezug
Bernoulli-Kette: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Do 26.03.2009
Autor: Zwerglein

Hi, LK2010,

also immerhin löst Ihr das mit Tafelwerk!
Mein Ansatz wäre nun:

P(X [mm] \le [/mm] k) [mm] \ge [/mm] 0,97

Denn: Die Anzahl der defekten Ventile darf auch kleiner als k sein!
(Kein Mensch wird eine Lieferung ablehnen, nur wenn die Anzahl der defekten Teile nicht genau gleich einer vorgegebenen Zahl, sondern kleiner als diese ist!)
Und: Die Wahrscheinlichkeit dafür, dass höchstens k defekte Ventile gefunden werden und die Lieferung daher angenommen wird, soll mindestens 97% betragen (damit die Lieferung in höchstens 3% abgelehnt wird).

Demnach gilt:  [mm] \summe_{i=0}^{k} [/mm] B(30; 0,05; i) [mm] \ge [/mm] 0,97.

Mit Hilfe des Tafelwerks finde ich den Wert: k = 4.

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de