www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Bernoulli DGL
Bernoulli DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoulli DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 Fr 17.07.2009
Autor: Sachsen-Junge

Hallo liebes Team,

die DGL lautet:

[mm] y'+(x-\frac{1}{x})y+x+e^{-x^2}+y^{-1}=0. [/mm] y(1)=1

Ich habe die DGL soweit gelöst, aber ich denke meine Lösuung ist falsch.

Mein Ansatz:

[mm] z=y^2 [/mm]
z'=2*y*y' [mm] \Rightarrow y'=\frac{z'}{2y} [/mm]


Dann setze ich das ein und bekomme eine lin. DGL erster Ordnung.
Die Lösung lautet [mm] z_h(x)=\frac{x^2}{e^{x^2}}C. [/mm]

Der nächste Schritt ist die Variation der Konstanten.

Da bekomme ich für C(x) heraus  -ln(x)

Das heißt [mm] z_s(x)= -ln(x)*\frac{x^2}{e^{x^2}} [/mm]

Also

[mm] z_a(x)= z_h(x)+z_s(x)=\frac{x^2}{e^{x^2}}C-ln(x)*\frac{x^2}{e^{x^2}} [/mm]

das heißt

[mm] y^2=\frac{x^2}{e^{x^2}}C-ln(x)*\frac{x^2}{e^{x^2}} [/mm]
d.h.
[mm] y=\wurzel{\frac{x^2}{e^{x^2}}C-ln(x)*\frac{x^2}{e^{x^2}}} [/mm]

ich setze den Punkt ein und es gilt.

[mm] 1=\wurzel{\frac{c}{e}} \gdw1=\frac{c}{e} \rightarrow [/mm] c=e

        
Bezug
Bernoulli DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:07 Fr 17.07.2009
Autor: wogie


> Hallo liebes Team,
>  
> die DGL lautet:
>  
> [mm]y'+(x-\frac{1}{x})y+x+e^{-x^2}+y^{-1}=0.[/mm] y(1)=1
>  
> Ich habe die DGL soweit gelöst, aber ich denke meine
> Lösuung ist falsch.
>  
> Mein Ansatz:
>  
> [mm]z=y^2[/mm]
>  z'=2*y*y' [mm]\Rightarrow y'=\frac{z'}{2y}[/mm]
>  
>
> Dann setze ich das ein und bekomme eine lin. DGL erster
> Ordnung.
>  Die Lösung lautet [mm]z_h(x)=\frac{x^2}{e^{x^2}}C.[/mm]

Bist du dir da sicher? Skizzier doch mal den Lösungsweg, da ich glaube, dass das schon falsch ist


Bezug
        
Bezug
Bernoulli DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 23:51 Fr 17.07.2009
Autor: leduart

Hallo
Ich bekomme bei der Substitution keine lineare Dgl.
du hast offensichtlich mit y multipl. aber vergessen, dass dann da [mm] (x+e^{-x^2})*\wurzel{y} [/mm] steht.
Gruss leduart

Bezug
                
Bezug
Bernoulli DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:36 Sa 18.07.2009
Autor: Sachsen-Junge

Hallo,

meine DGL war falsch. Hier die richtige:


$ [mm] y'+(x-\frac{1}{x})y+x*e^{-x^2}*y^{-1}=0. [/mm] $  | [mm] *\frac{1}{y^{-1}} [/mm]
[mm] \gdw [/mm]
[mm] \frac{y'}{y^{-1}}+(x-\frac{1}{x})\frac{y}{y^{-1}}+x*e^{-x^2}=0 [/mm]

Mein Ansatz:
[mm] z=y^2 [/mm]
z'=2y*y'

Da müsste aber eine Lineare Dgl 1.Ordnung heraus kommen...


Liebe Grüße

Bezug
                        
Bezug
Bernoulli DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Sa 18.07.2009
Autor: wogie


> Hallo,
>  
> meine DGL war falsch. Hier die richtige:
>  
>
> [mm]y'+(x-\frac{1}{x})y+x*e^{-x^2}*y^{-1}=0.[/mm]  |
> [mm]*\frac{1}{y^{-1}}[/mm]
>  [mm]\gdw[/mm]
>  
> [mm]\frac{y'}{y^{-1}}+(x-\frac{1}{x})\frac{y}{y^{-1}}+x*e^{-x^2}=0[/mm]
>  
> Mein Ansatz:
>  [mm]z=y^2[/mm]
>  z'=2y*y'
>  
> Da müsste aber eine Lineare Dgl 1.Ordnung heraus
> kommen...
>  
>
> Liebe Grüße

Das stimmt auch. Die kann man dann einfach mit Trennung der Variablen lösen. Dein Ergebnis müsste stimmen. Danach Variation der Konstanten. Bis auf den Vorfaktor bei der speziellen Lösung sieht auch alles ganz gut aus.

Bezug
        
Bezug
Bernoulli DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Sa 18.07.2009
Autor: MathePower

Hallo Saschsen-Junge,

> Hallo liebes Team,
>  
> die DGL lautet:
>  
> [mm]y'+(x-\frac{1}{x})y+x+e^{-x^2}+y^{-1}=0.[/mm] y(1)=1
>  
> Ich habe die DGL soweit gelöst, aber ich denke meine
> Lösuung ist falsch.
>  
> Mein Ansatz:
>  
> [mm]z=y^2[/mm]
>  z'=2*y*y' [mm]\Rightarrow y'=\frac{z'}{2y}[/mm]
>  
>
> Dann setze ich das ein und bekomme eine lin. DGL erster
> Ordnung.
>  Die Lösung lautet [mm]z_h(x)=\frac{x^2}{e^{x^2}}C.[/mm]
>  
> Der nächste Schritt ist die Variation der Konstanten.
>  
> Da bekomme ich für C(x) heraus  -ln(x)


Da Du die DGL hier korrigiert hast,
bin ich auf [mm]C\left(x\right)=-\red{2}*\ln\left(x\right)[/mm] gekommen..


>  
> Das heißt [mm]z_s(x)= -ln(x)*\frac{x^2}{e^{x^2}}[/mm]
>  
> Also
>
> [mm]z_a(x)= z_h(x)+z_s(x)=\frac{x^2}{e^{x^2}}C-ln(x)*\frac{x^2}{e^{x^2}}[/mm]
>  
> das heißt
>  
> [mm]y^2=\frac{x^2}{e^{x^2}}C-ln(x)*\frac{x^2}{e^{x^2}}[/mm]
>  d.h.
>  [mm]y=\wurzel{\frac{x^2}{e^{x^2}}C-ln(x)*\frac{x^2}{e^{x^2}}}[/mm]
>  
> ich setze den Punkt ein und es gilt.
>  
> [mm]1=\wurzel{\frac{c}{e}} \gdw1=\frac{c}{e} \rightarrow[/mm] c=e


Die Konstante c ist richtig.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de