www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Bernoulli DGL
Bernoulli DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoulli DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:19 Mi 28.10.2009
Autor: raubkaetzchen

Aufgabe
Bestimme Lösung der ODE im ersten Quadranten, d.h. t>0 und x(t)>0.

a) [mm] 0=x'(t)+\bruch{x(t)}{2t}- \bruch{1}{x(t)} [/mm]

Hallo, ich rechne nun schon einige male diese Aufgabe durch und bekomme am Ende irgendwie immer ein Vorzeichen Problem. Vielleicht kann einer von euch meinen Fehler erkennen:

Also :

0=x'(t)+ [mm] \bruch{x(t)}{2t}-\bruch{1}{x(t)} \gdw... [/mm]

[mm] 2=z'(t)+\bruch{z(t)}{t} [/mm] mit [mm] z(t)=x(t)^2 [/mm]

Hierfür erst die Lösung des homogenen Falls:
[mm] 0=z'(t)+\bruch{z(t)}{t} \gdw [/mm]

ln|z(t)|=-ln(t) + c  [mm] \gdw [/mm]

z(t)=t*c mit c konstant

Nun mit Ansatz von Lagrange:

z(t)=t*c(t) [mm] \gdw [/mm]
c(t)= [mm] \bruch{z(t)}{t} [/mm]

[mm] \Rightarrow [/mm] c'(t)= [mm] \bruch{t*z'(t)-z(t)}{t^2}=\bruch{1}{t}*(z'(t)-z(t)*\bruch{1}{t}) [/mm]

aber mein [mm] h(x)=2=(z'(t)+z(t)*\bruch{1}{t}) [/mm]

somit kann ich in obiger zeile nich die klammer durch h(x)=2 ersetzen.

Bisher hat diese Methode immer funktioniert nur was mache ich bei dieser Aufgabe falsch??

Vielen Dank für eure Hilfe.

als kleine Zusatzfrage, die mich momentan plagt ist, warum der Ansatz von Lagrange also die Variation der Konstanten zum Ziel führt bzw. was dieses vorgehen genau rechtfertigt. Vielleicht weiß einer von euch ja auch auf diese Frage eine Antwort

Gruß

        
Bezug
Bernoulli DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:34 Mi 28.10.2009
Autor: raubkaetzchen

ich glaube den Fehler gefunden zu haben.

es muss bei der Lösung der homogenen lineraren DGL heissen:

[mm] \bruch{z'(t)}{z(t)}=- \bruch{1}{t} \gdw [/mm]

[mm] z(t)=\bruch{c}{t} [/mm] mit c konstant

wegen dem -....

so gehts.

Danke. Aber vielleicht kann ja jemand mir die variation genauer durchleucten...´
Gruß

Bezug
        
Bezug
Bernoulli DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Mi 28.10.2009
Autor: MathePower

Hallo raubkaetzchen,

> Bestimme Lösung der ODE im ersten Quadranten, d.h. t>0 und
> x(t)>0.
>  
> a) [mm]0=x'(t)+\bruch{x(t)}{2t}- \bruch{1}{x(t)}[/mm]
>  Hallo, ich
> rechne nun schon einige male diese Aufgabe durch und
> bekomme am Ende irgendwie immer ein Vorzeichen Problem.
> Vielleicht kann einer von euch meinen Fehler erkennen:
>  
> Also :
>  
> 0=x'(t)+ [mm]\bruch{x(t)}{2t}-\bruch{1}{x(t)} \gdw...[/mm]
>  
> [mm]2=z'(t)+\bruch{z(t)}{t}[/mm] mit [mm]z(t)=x(t)^2[/mm]
>  
> Hierfür erst die Lösung des homogenen Falls:
>  [mm]0=z'(t)+\bruch{z(t)}{t} \gdw[/mm]
>  
> ln|z(t)|=-ln(t) + c  [mm]\gdw[/mm]
>  
> z(t)=t*c mit c konstant


Aus

[mm]ln|z(t)|=-ln(t) + c[/mm]

folgt

[mm]z\left(t\right)=c* \red{\bruch{1}{t}}[/mm]


>  
> Nun mit Ansatz von Lagrange:
>  
> z(t)=t*c(t) [mm]\gdw[/mm]
>  c(t)= [mm]\bruch{z(t)}{t}[/mm]
>  
> [mm]\Rightarrow[/mm] c'(t)=
> [mm]\bruch{t*z'(t)-z(t)}{t^2}=\bruch{1}{t}*(z'(t)-z(t)*\bruch{1}{t})[/mm]
>  
> aber mein [mm]h(x)=2=(z'(t)+z(t)*\bruch{1}{t})[/mm]
>  
> somit kann ich in obiger zeile nich die klammer durch
> h(x)=2 ersetzen.
>  
> Bisher hat diese Methode immer funktioniert nur was mache
> ich bei dieser Aufgabe falsch??


Die homogene Lösung stimmt hier nicht (siehe oben).


>  
> Vielen Dank für eure Hilfe.
>  
> als kleine Zusatzfrage, die mich momentan plagt ist, warum
> der Ansatz von Lagrange also die Variation der Konstanten
> zum Ziel führt bzw. was dieses vorgehen genau
> rechtfertigt. Vielleicht weiß einer von euch ja auch auf
> diese Frage eine Antwort
>  
> Gruß


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de