www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Bernoulli DGL
Bernoulli DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoulli DGL: Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:43 Mo 07.11.2011
Autor: paul87

Aufgabe
Bestimmen Sie die Lösung des Bernoulli-AWP:

[mm] y'=\bruch{y}{x}-y^{2}, [/mm] x>0, y(0)=1.

Ich habe angefangen das Problem zu lösen und bin auf folgende homogene Lösung gestoßen:

[mm] Uh=\wurzel{2ln(|x|)}+C [/mm]

Aber irgendwie erscheint mir diese als falsch.

Bevor ich die homogene Lösung bestimmt habe, habe ich folgende DGL durch Substitution erhalten:

[mm] U'=\bruch{1}{Ux}+1 [/mm]

Kann mir vielleicht jemand sagen, ob ich bisher richtig liege?

Viele Grüße und Danke für die Hilfe.

        
Bezug
Bernoulli DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 Mo 07.11.2011
Autor: Harris

Hi!

Ich finde das irgendwie komisch, dass erst $x>0$ definiert wird und dann das AWP bei $x=0$ startet...

Steht das auch so in der Angabe? Denn wenn man die Lösungsformel der Bernoulli-DGL

[mm] e^{\int_{x_0}^x(1^-\tau)p(t)dt}\cdot(y_0^{1-\tau}+\int_{x_0}^x(1-\tau)q(t)e^{-\int_{x_0}^t(1-\tau)p(\xi)d\xi}dt) [/mm]

mit [mm] $x_0=0,y_0=1,\tau=2,p(x)=\frac{1}{x},q(x)=-1$ [/mm]

anwendet, bekommt man ein gemeines uneigentliches Integral heraus... :(

Gruß, Harris



Bezug
                
Bezug
Bernoulli DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:09 Mo 07.11.2011
Autor: paul87

Das steht ganz genauso da drin. Ich habe es eins zu eins abgeschrieben.


Danke schon Mal für die Überlegungen.

Bezug
                        
Bezug
Bernoulli DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:22 Mo 07.11.2011
Autor: paul87

Weiß Jemand vielleicht wie man das Problem lösen kann?

Vielen Dank im Voraus.

Bezug
        
Bezug
Bernoulli DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Mo 07.11.2011
Autor: fred97


> Bestimmen Sie die Lösung des Bernoulli-AWP:
>  
> [mm]y'=\bruch{y}{x}-y^{2},[/mm] x>0, y(0)=1.
>  Ich habe angefangen das Problem zu lösen und bin auf
> folgende homogene Lösung gestoßen:
>  
> [mm]Uh=\wurzel{2ln(|x|)}+C[/mm]

Merkwürdig ......

>  
> Aber irgendwie erscheint mir diese als falsch.

Ja, das ist es

>
> Bevor ich die homogene Lösung bestimmt habe, habe ich
> folgende DGL durch Substitution erhalten:
>  
> [mm]U'=\bruch{1}{Ux}+1[/mm]

Rechne nochmal nach. Du solltest erhalten: [mm]U'=\bruch{1}{x}*U-1[/mm]

Edit: Nein, Du solltest erhalten: [mm]-U'=\bruch{1}{x}*U-1[/mm]


Der Einwand von Harris bleibt:  stimmt die Anfangsbed. y(0)=1 ?

FRED

>  
> Kann mir vielleicht jemand sagen, ob ich bisher richtig
> liege?
>
> Viele Grüße und Danke für die Hilfe.


Bezug
                
Bezug
Bernoulli DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:03 Mo 07.11.2011
Autor: paul87

Verdammt. Die Substitution ist [mm] U=\bruch{1}{y}. [/mm] Ich habe falsch eingesetzt.

Aber dennoch komme ich auf ein anderes Ergebnis: [mm] U'=-\bruch{1}{x}U+1 [/mm]

Und die Anfangsbedingung steht auch wirklich so in der Aufgabenstellung: y(0)=1 und x>0, Das widerspricht sich doch oder?

Bezug
                        
Bezug
Bernoulli DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:17 Mo 07.11.2011
Autor: Harris

Ja, das widerspricht sich irgendwie... Denn für die Existenz einer Lösung müsste die rechte Seite in $x$ stetig sein. In  $x=0$ ist sie aber nicht mal definiert...

Nimmt man z.B. $y(1)=1$ so käme z.B. [mm] $\frac{2x}{1+x^2}$ [/mm] heraus, direkt aus obiger Lösungsformel. Oder allgemeiner  [mm] $\frac{2x}{c+x^2}$ [/mm] für eine geeignete Konstante...

Bezug
                
Bezug
Bernoulli DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:43 Mo 07.11.2011
Autor: paul87

Hallo Fred,

wie kommst du auf [mm] U'=\bruch{1}{x}U-1?? [/mm]

Ich habe substituiert:

[mm] U=\bruch{1}{y} [/mm]

Dann ist

[mm] U'=-\bruch{1}{y^2}*y'=-\bruch{1}{x}U+1 [/mm]

Wo liegt mein Fehler, kann diesen wieder nicht finden. Ich sitze eindeutig zu lange vor dieser Aufgabe.

Bezug
                        
Bezug
Bernoulli DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Mo 07.11.2011
Autor: fred97


> Hallo Fred,
>  
> wie kommst du auf [mm]U'=\bruch{1}{x}U-1??[/mm]
>  
> Ich habe substituiert:
>  
> [mm]U=\bruch{1}{y}[/mm]
>  
> Dann ist
>  
> [mm]U'=-\bruch{1}{y^2}*y'=-\bruch{1}{x}U+1[/mm]
>  
> Wo liegt mein Fehler,

Nirgendwo, ich hab mich mit dem Vorzeichen vertan

FRED

> kann diesen wieder nicht finden. Ich
> sitze eindeutig zu lange vor dieser Aufgabe.


Bezug
                                
Bezug
Bernoulli DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Mo 07.11.2011
Autor: paul87

Wenn ich dann weiter rechne, komme ich auf folgende homogene Lösung:

Uh=-Cx

Die partikuläre Lösung wäre dann:

Up=-C(x)*x

Up'=-C'(x)x-C(x)

Einsetzen in die DGL:

-C'(x)x-C(x) = [mm] \bruch{1}{x}C(x)x+1 [/mm]

Hier sieht man, dass sich das C(x) nicht auflöst, somit kann die Rechnung nicht richtig sein. Wo liegt der Fehler? Ich kann ihn leider nicht finden... :(

Bezug
                                        
Bezug
Bernoulli DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 15:04 Mo 07.11.2011
Autor: fred97


> Wenn ich dann weiter rechne, komme ich auf folgende
> homogene Lösung:
>  
> Uh=-Cx

Das stimmt nicht. Es ist [mm] U_h(x)=\bruch{c}{x} [/mm]

FRED


P.S.: man sagt nicht "homogene Lösung". Die Lösung ist nicht homogen, sondern eine Lösung der zugeh. homogenen DGL.

>  
> Die partikuläre Lösung wäre dann:
>  
> Up=-C(x)*x
>  
> Up'=-C'(x)x-C(x)
>  
> Einsetzen in die DGL:
>  
> -C'(x)x-C(x) = [mm]\bruch{1}{x}C(x)x+1[/mm]
>  
> Hier sieht man, dass sich das C(x) nicht auflöst, somit
> kann die Rechnung nicht richtig sein. Wo liegt der Fehler?
> Ich kann ihn leider nicht finden... :(


Bezug
                                                
Bezug
Bernoulli DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:13 Mo 07.11.2011
Autor: paul87

Vielen vielen Dank, jetzt sehe ich den Fehler. Durch das negative Vorzeichen im Exponenten der e-Funktion wird nicht multipliziert, sondern dividiert.

Manchmal ist es so einfach, trotzdem wäre ich nie darauf gekommen. Ich liebe dieses Forum! :)

Dankeee...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de