www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Bernoullikette
Bernoullikette < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoullikette: Formel
Status: (Frage) beantwortet Status 
Datum: 15:45 So 11.03.2007
Autor: NightmareVirus

Hallo wir haben folgende Formel inner Schule kennengelernt:

SATZ: Für eine Bernoulli-Kette mit der Länge n, n [mm] \in \IN, [/mm] und der Trefferwahrscheinlichkeit p gilt:  

P ( X = k) = [mm] \vektor{n \\ k} [/mm] * [mm] p^{k} [/mm] * (1 - [mm] p)^{n-k} [/mm]

Hierbei gibt die Zufallsgröße X die Trefferzahl k an, wobei k /in {0;1;....;n}.


Dann haben wir auf der gleichen Seite im Buch eine DEFINITION:

Kann eine Zufallsgröße X die Werte 0,1,....n  annehmen und gilt fr die Wahrscheinlichkeiten P ( X = k) = [mm] \vektor{n \\ k} [/mm] * [mm] p^{k} [/mm] * (1 - [mm] p)^{n-k} [/mm] , dann heißt X binomialverteilte Zufallsgröße. Die entsprechende Wahrscheinlichekitsverteilung heißt Binomialverteilung [mm] B_{n;p} [/mm] mit den Parametern n und p.



1. Warum erst ein SATZ und dann eine DEFINITION?

2. Was kann die tolle Formel alles? Ich hab schon rausgefunden dass bei einigen Aufgaben die Formel recht hilfreich ist:

z.b.:
In einer Kleinstadt sind ca. 10% der Einwohner Mitlgied im TSV. Wie groß ist die Wahrschienlichkeit, dass von 20 Personen dieser Bevölkerung
a) genau eine Mitglied des TSV ist


da ist ja klar einfach einsetzen...

n = 20, p = 0,1, k = 1

Wie sieht dass jezz aus wenn gefragt ist:

d)... mehr als 7 Personen Mitglieder des TSV sind?


muss ich jezz die Formel für 7 - 20 verwenden? oder einfacher von 1-6 und die Wahrscheinlichkeit dann von 100% abziehen ( das wäre ja äquivalent )... aber is trotzdem relativ viel arbeit...

gibts das noch nen trick womit man bei solchen aufgaben schneller ans ergebnis kommt (ohne 7 mal die Formel zu verwenden? )

        
Bezug
Bernoullikette: Beantwortung der Frage
Status: (Antwort) fertig Status 
Datum: 15:59 So 11.03.2007
Autor: Tai

Genau so macht man das
Du rechnest die Wahrscheinlichkeitn für p(X=0)-...p(X=6) aus, addierst dies und ziehst dieses Ergebnis dann von 100% ab.
Damit du nun aber das nicht alles ausrechnen musst, gibt es die sogenannten kummulierten Tabellen(da sind die Wahrscheinlichkeiten schon zusammen gerechnet).
Da schaust du dann nach deinem n, deinem k und kannst dann die Wahrscheinlichkeit p(X<=6) ablesen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de