www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Bernoullische DGl - Intervall?
Bernoullische DGl - Intervall? < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoullische DGl - Intervall?: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 15:32 Sa 23.01.2010
Autor: Cybrina

Aufgabe
Bestimmen Sie mit Hilfe der Substitution [mm] z(x)=u^{-4}(x) [/mm] alle Lösungen der Differentialgleichung
[mm] u'-u=xu^5. [/mm]

Also an sich macht die Aufgabe ja keine Probleme. Nach Substitution komm ich auf

z'+4z=-4x

das gelöst ergibt

[mm] z(x)=de^{-4x}-x+\bruch{1}{4}, d\in\IR [/mm]

Nun aber Rücksubstitution würde ja ergeben

[mm] u(x)=\bruch{1}{\wurzel[4]{de^{-4x}-x+\bruch{1}{4}}} [/mm]

und spätestens da müsste man doch das Lösungsintervall irgendwie einschränken?! Oder ist die DGL dann nicht lösbar, da u(x) nicht für alle x definiert ist?

Danke schonmal,

        
Bezug
Bernoullische DGl - Intervall?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Sa 23.01.2010
Autor: MathePower

Hallo Cybrina,

> Bestimmen Sie mit Hilfe der Substitution [mm]z(x)=u^{-4}(x)[/mm]
> alle Lösungen der Differentialgleichung
>  [mm]u'-u=xu^5.[/mm]
>  
> Also an sich macht die Aufgabe ja keine Probleme. Nach
> Substitution komm ich auf
>  
> z'+4z=-4x
>  
> das gelöst ergibt
>  
> [mm]z(x)=de^{-4x}-x+\bruch{1}{4}, d\in\IR[/mm]
>  
> Nun aber Rücksubstitution würde ja ergeben
>  
> [mm]u(x)=\bruch{1}{\wurzel[4]{de^{-4x}-x+\bruch{1}{4}}}[/mm]


Mit [mm]u\left(x\right)[/mm] ist hier auch [mm]-u\left(x\right)[/mm] Lösung der Bernoulli-DGL.

Welche Lösung jetzt die Richtige ist,
hängt von der Anfangsbedingung ab.


>  
> und spätestens da müsste man doch das Lösungsintervall
> irgendwie einschränken?! Oder ist die DGL dann nicht
> lösbar, da u(x) nicht für alle x definiert ist?


Das Lösungsintervall ist auf diejenigen x zu beschränken,
für die

[mm]d*e^{-4x}-x+\bruch{1}{4} > 0 [/mm]

ist.


>  
> Danke schonmal,



Gruss
MathePower

Bezug
        
Bezug
Bernoullische DGl - Intervall?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 So 24.01.2010
Autor: rainerS

Hallo!

> Bestimmen Sie mit Hilfe der Substitution [mm]z(x)=u^{-4}(x)[/mm]
> alle Lösungen der Differentialgleichung
>  [mm]u'-u=xu^5.[/mm]
>  
> Also an sich macht die Aufgabe ja keine Probleme. Nach
> Substitution komm ich auf
>  
> z'+4z=-4x
>  
> das gelöst ergibt
>  
> [mm]z(x)=de^{-4x}-x+\bruch{1}{4}, d\in\IR[/mm]
>  
> Nun aber Rücksubstitution würde ja ergeben
>  
> [mm]u(x)=\bruch{1}{\wurzel[4]{de^{-4x}-x+\bruch{1}{4}}}[/mm]
>  
> und spätestens da müsste man doch das Lösungsintervall
> irgendwie einschränken?! Oder ist die DGL dann nicht
> lösbar, da u(x) nicht für alle x definiert ist?

Die DGL ist schon lösbar, aber die Lösung existiert nur für [mm] $x
Wenn aber für bestimmte Werte von $d$ der Ausdruck [mm] $de^{-4x}-x+\bruch{1}{4}$ [/mm] keine Nullstelle hat, sondern für alle [mm] $x\in\IR$ [/mm] negativ ist, dann hat die DGL überhaupt keine Lösung. Diese Bedingung gibt dir eine untere Schranke für $d$.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de