www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Beschränkte Folgen
Beschränkte Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränkte Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Mo 13.09.2010
Autor: G-Hoernle

Aufgabe
Wann ist eine Folge konvergent?

Ich habe hier 2 verschiedene Definitionen:

1: Es gibt eine obere (S1) und eine untere (S2) Schranke [mm] \in \IR, [/mm] sodass [mm] \forall [/mm] n [mm] \in \IN [/mm] : S1 <= [mm] a_{n} [/mm] <= S2

2: Es gibt eine Schranke S [mm] \in \IR, [/mm] sodass [mm] \forall [/mm] n [mm] \in \IN [/mm] : [mm] |a_{n}| [/mm] <= S

Besagt die zweite Definition nicht etwas anderes als die erste, bzw. ist die zweite nicht zu ungenau? Beispielsweise haben wir nach Def. 1 eine Folge mit oberer Schranke 2 und unterer 0, dann wäre nach Def. 2 die "untere Schranke" -2.

Gruß
GHoernle


        
Bezug
Beschränkte Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Mo 13.09.2010
Autor: schachuzipus

Hallo GHoernle,

> Wann ist eine Folge konvergent?
> Ich habe hier 2 verschiedene Definitionen:

Aber nicht für "konvergent" - du meinst beschränkt"

>
> 1: Es gibt eine obere (S1) und eine untere (S2) Schranke
> [mm]\in \IR,[/mm] sodass [mm]\forall[/mm] n [mm]\in \IN[/mm] : S1 <= [mm]a_{n}[/mm] <= S2
>
> 2: Es gibt eine Schranke S [mm]\in \IR,[/mm] sodass [mm]\forall[/mm] n [mm]\in \IN[/mm]
> : [mm]|a_{n}|[/mm] <= S
>
> Besagt die zweite Definition nicht etwas anderes als die
> erste, bzw. ist die zweite nicht zu ungenau? Beispielsweise
> haben wir nach Def. 1 eine Folge mit oberer Schranke 2 und
> unterer 0, dann wäre nach Def. 2 die "untere Schranke" -2.

Es gibt ja nicht "die" untere Schranke.

In der ersten Definition können [mm]s_1[/mm] und [mm]s_2[/mm] durchaus betraglich verschieden sein.

Wenn du in der ersten Definition mit [mm]s_1[/mm] eine untere Schranke gegeben hast, so ist jede kleinere Zahl [mm]s_0\le s_1[/mm] ja ebenfalls eine untere Schranke.

Ebenso nach oben hin, jede Zahl [mm]s_3\ge s_2[/mm] ist ebenfalls obere Schranke.

In der zweiten Definition wählt man eine Schranke [mm]s\ge 0[/mm] so, dass [mm]s[/mm] obere Schranke und [mm]-s[/mm] untere Schranke ist:

Es ist ja [mm]|a_n|=a_n[/mm] für [mm]a_n\ge 0[/mm] und [mm]|a_n|=-a_n[/mm] für [mm]a_n<0[/mm]

Also [mm]|a_n|\le s\gdw a_n\le s[/mm] falls [mm]a_n\ge 0[/mm]

und [mm]|a_n|\le s\gdw -a_n\le s\gdw a_n\ge -s[/mm] falls [mm]a_n<0[/mm]

Zusammen [mm]-s\le a_n\le s[/mm]

Das ist also ein "Spezialfall" von der ersten Def. mit [mm]s_1=-s[/mm] und [mm]s_2=s[/mm]

>
> Gruß
> GHoernle
>

LG

schachuzipus

Bezug
                
Bezug
Beschränkte Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:09 Di 14.09.2010
Autor: G-Hoernle

Ich meinte tatsächlich beschränkt, sorry :)

Damit ist meine Frage beantwortet, danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de