www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Beschränktheit Potenzreihe
Beschränktheit Potenzreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränktheit Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:10 Sa 22.09.2018
Autor: Maxi1995

Hallo,
angenommen ich habe eine Potenzreihe eine Funktion von der ich weiß, dass sie auf einer Kreisscheibe mit dem Radius r um einen Entwicklungspunkt [mm] $z_0$ [/mm] normal konvergiert. Hat ferner die Potenzreihe einen kleinsten Koeffizienten ungleich 0, ohne Einschränkung [mm] $a_n$, [/mm] dann kann man die Potenzreihe umformen wie folgt:

[mm] $(z-z_0)^n(a_n+\underbrace{a_{n+1}(z-z_0)+...})$ [/mm]

Kann man für die rechte Klammer zeigen, dass der Anteil ab [mm] $a_{n+1}...$ [/mm] beschränkt ist, d.h. wenn ich die Kreisscheibe extrem verkleinere, dass dann gilt [mm] $|a_n|>$ [/mm] dem benannten Anteil?

Meine Idee wäre gewesen, zu sagen, dass aus der lokal gleichmäßig Konvergenz der Potenzreihe auch folgt, dass sie als Grenzwert einer stetigen Partialsummenfolge stetig sein muss und damit auf kompakten Mengen beschränkt, was ja eine abgeschlossene Kreisscheibe erlauben würde.

Ist das tragfähig?


        
Bezug
Beschränktheit Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 Sa 22.09.2018
Autor: fred97


> Hallo,
>  angenommen ich habe eine Potenzreihe eine Funktion von der
> ich weiß, dass sie auf einer Kreisscheibe mit dem Radius r
> um einen Entwicklungspunkt [mm]z_0[/mm] normal konvergiert. Hat
> ferner die Potenzreihe einen kleinsten Koeffizienten
> ungleich 0, ohne Einschränkung [mm]a_n[/mm], dann kann man die
> Potenzreihe umformen wie folgt:
>  
> [mm](z-z_0)^n(a_n+\underbrace{a_{n+1}(z-z_0)^{n+1}+...})[/mm]
>  

Nach [mm] a_{n+1} [/mm] muss [mm] z-z_0 [/mm] stehen und nicht der Exponent n+1


> Kann man für die rechte Klammer zeigen, dass der Anteil ab
> [mm]a_{n+1}...[/mm] beschränkt ist, d.h. wenn ich die Kreisscheibe
> extrem verkleinere, dass dann gilt [mm]|a_n|>[/mm] dem benannten
> Anteil?
>  

der von Dir angesprochene Anteil  hat in [mm] z_0 [/mm] eine Nullstelle,  ist also in einer hinreichend kleinen Kreisscheibe um [mm] z_0 [/mm] kleiner als  [mm] |a_n| [/mm]


> Meine Idee wäre gewesen, zu sagen, dass aus der lokal
> gleichmäßig Konvergenz der Potenzreihe auch folgt, dass
> sie als Grenzwert einer stetigen Partialsummenfolge stetig
> sein muss und damit auf kompakten Mengen beschränkt, was
> ja eine abgeschlossene Kreisscheibe erlauben würde.
>  
> Ist das tragfähig?
>  


Bezug
                
Bezug
Beschränktheit Potenzreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:16 Sa 22.09.2018
Autor: Maxi1995

Danke für deine Antwort, das hilft mir weiter.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de