www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Bestimmen des Erwartungswertes
Bestimmen des Erwartungswertes < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmen des Erwartungswertes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 So 11.01.2009
Autor: thunder12

Aufgabe
Auf der ausgelassenen Weihnachtsfeier der Teilnehmer der Vorlesung gibt es einen Julklapp. Dazu bringt jeder Teilnehmer ein Geschenk mit, und alle Geschenke werden in einen großen Sack verfrachtet. Danach zieht jeder der Partygäste zufällig ein Geschenk aus dem Sack.

(a) Was ist die erwartete Anzahl der Leute, die ihr eigenes Geschenk ziehen?

(b) Was ist die Wahrscheinlichkeit dafür, dass mindestens ein Partygast sein eigenes
Geschenk zieht? (Hinweis: Verwenden Sie das Prinzip der Inklusion-Exklusion)

Hallo,

wir hängen leider schon an der a).

Wir haben uns darüber Gedanken gemacht und nehmen erst einmal einen Julklapp mit 10 Teilnehmern:

Die Wahrscheinlichkeit das jeder sein eigenes Geschenk zieht ist

1/n!  = 1/10 * 1/9 * 1/8 … 1/1

Die Wahrscheinlichkeit das einer nicht sein Bild zieht geht nicht, da es mind. 2 sein müssen die nicht Ihr Bild ziehen.

Und nun kommen wir zur eigentlichen Frage.

Das Problem was wir haben ist nun das wir nicht wissen wie wir das darstellen, dass 8 Stk. Ihr Bild erhalten und 2 Stk. nicht.

Spielt die Reihenfolge nicht eine Rolle, wann Sie ihr eigenes Bild ziehen? Wenn jemand als erstes nicht sein Bild zieht liegt die Wahrscheinlichkeit bei 9/10. Zieht er jedoch erst an einer anderen Position so liegt diese bei Bsp: 3/4.

Daraus würden sich verschiedene Wahrscheinlichkeiten bilden für 8 treffen Ihr eigenes Bild 2 treffen das Bild des anderen.

9/10 * 8/9 * 1/8 * 1/7 * 1/6 * … * 1/1
1/10 * 1/9 * 1/8 * 1/7 * 5/6 * 4/5 * … * 1/1

Um den Erwartungswert für E(x) mit: Wie viele Leute ziehen ihr eigenes Geschenk, zu ermitteln benötigen wir doch die Wahrscheinlichkeiten für jeden Fall, oder sehe ich das Falsch?

vielen Dank im Voraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimmen des Erwartungswertes: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 Mo 12.01.2009
Autor: luis52

Moin thunder12,

[willkommenmr]


Da schau her.

vg Luis    

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de