www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Bestimmen von Variablen
Bestimmen von Variablen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmen von Variablen: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:59 Di 07.05.2013
Autor: h0ffmann

Aufgabe
f(x)=-p²x²+4   p>0 A=8/3

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Habe leider keine Idee wie ich auf p kommen soll...
Bin soweit gekommen das ich von 0 an integriere und dann die hälfte der Fläche nehme, da die funktion achsensymetrich ist.
Also etwa so: [mm] \integral_{0}^{b}{f(x) dx}=4/3 [/mm]
Würde gerne einen ansatz haben wie ich da ran gehen soll...
Danke schonmal im Vorraus


        
Bezug
Bestimmen von Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Di 07.05.2013
Autor: notinX

Hallo,

> f(x)=-p²x²+4   p>0 A=8/3

schreib doch nicht so viel auf einmal zur Aufgabenstellung...

>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Habe leider keine Idee wie ich auf p kommen soll...
>  Bin soweit gekommen das ich von 0 an integriere und dann
> die hälfte der Fläche nehme, da die funktion
> achsensymetrich ist.

Das kann man tun, muss man aber nicht.

>  Also etwa so: [mm]\integral_{0}^{b}{f(x) dx}=4/3[/mm]
>  Würde gerne
> einen ansatz haben wie ich da ran gehen soll...

Das ist schon der richtige Ansatz. Es ist vermutlich der Flächeninhalt der von dem Graph der Funktion und der x-Achse einegeschlossen wird gefragt. Du musst jetzt noch die Integrationsgrenze genauer bestimmen. Die x-Koordinate der Fläche wird durch die Nullstellen der Funktion beschränkt.

>  Danke schonmal im Vorraus
>  

Gruß,

notinX

Bezug
                
Bezug
Bestimmen von Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:29 Di 07.05.2013
Autor: h0ffmann


> Das ist schon der richtige Ansatz. Es ist vermutlich der
> Flächeninhalt der von dem Graph der Funktion und der
> x-Achse einegeschlossen wird gefragt.

ja 'tschuldige das hätte ich dazu schreiben sollen^^

> Du musst jetzt noch
> die Integrationsgrenze genauer bestimmen. Die x-Koordinate
> der Fläche wird durch die Nullstellen der Funktion
> beschränkt.

ja genau da komme ich nicht weiter:
0=-p²x²+4          |-4
-4=-p²x²           |/-p²
[mm] \bruch{-4}{-p²}=x² [/mm]  |wurzel{}

....das -p² will er im bruch bei mir nicht richtig anzeigen, sorry...
ab dieser stelle komm ich nicht wetier :(

Die Stammfunktion habe ich auch schon gebildet
[mm] F(x)=\bruch{-p²}{3}x^{3}+4x+d [/mm]

Wie ich dann das Integral bilde sollte ich hinbekommen.

Und danke dir für die schnelle antwort :)

Bezug
                        
Bezug
Bestimmen von Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 Di 07.05.2013
Autor: notinX


> > Du musst jetzt noch
> > die Integrationsgrenze genauer bestimmen. Die x-Koordinate
> > der Fläche wird durch die Nullstellen der Funktion
> > beschränkt.
>  
> ja genau da komme ich nicht weiter:
>  0=-p²x²+4          |-4
>  -4=-p²x²           |/-p²
>  [mm]\bruch{-4}{-p²}=x²[/mm]  |wurzel{}
>  
> ....das -p² will er im bruch bei mir nicht richtig
> anzeigen, sorry...

Potenzen werden so geschrieben: x^n

>  ab dieser stelle komm ich nicht wetier :(

Wo hängts denn genau? Du hast nun: [mm] $x^2=\frac{4}{p^2}$ [/mm]
Zieh die Wurzel und fertig.

>  
> Die Stammfunktion habe ich auch schon gebildet
>  [mm]F(x)=\bruch{-p²}{3}x^{3}+4x+d[/mm]
>  
> Wie ich dann das Integral bilde sollte ich hinbekommen.
>  
> Und danke dir für die schnelle antwort :)

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de