www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Bestimmtes Integral
Bestimmtes Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 Di 16.09.2008
Autor: RENE85

Aufgabe
[mm] \int_{0}^{1} x^5\wurzel{1+x^3}\, [/mm] dx

Moin, bräuchte hier mal nen Ansatz.
Mit Partieller brauch ich ja ewig bis die [mm] x^5 [/mm] weg sind und die wurzel wird dann immer schlimmer. Irgendwas zu kürzen hab ich auch nicht gefunden.
Wäre also über nen kleinen Anstoß sehr dankbar. ;)

lg

        
Bezug
Bestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Di 16.09.2008
Autor: Al-Chwarizmi


> [mm]\int_{0}^{1} x^5\wurzel{1+x^3}\,[/mm] dx
>  Moin, bräuchte hier mal nen Ansatz.
>  Mit Partieller brauch ich ja ewig bis die [mm]x^5[/mm] weg sind und
> die wurzel wird dann immer schlimmer. Irgendwas zu kürzen
> hab ich auch nicht gefunden.
>  Wäre also über nen kleinen Anstoß sehr dankbar. ;)
>  
> lg


Ich würde mal die Substitution   [mm] 1+x^3=u [/mm]   vorschlagen !

LG

Bezug
                
Bezug
Bestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 Di 16.09.2008
Autor: RENE85

Aufgabe
[mm] \int_{0}^{1} x^5\wurzel{x^3+1}\, [/mm] dx

Erstmal danke für den Tip. ;)
Hab das soweit mal versucht.

[mm] u=x^3+1 [/mm]
[mm] \bruch{du}{dx}=3x^2 [/mm]
[mm] dx=\bruch{du}{3x^2} [/mm]

[mm] \int_{0}^{1} x^5\wurzel{u}\, \bruch{du}{3x^2} [/mm]

[mm] x^2 [/mm] kürzen und [mm] \bruch{1}{3} [/mm] vors integral ziehen.

[mm] \bruch{1}{3}\int_{0}^{1} x^3\wurzel{u}\, [/mm] du

[mm] x^3=u-1 [/mm]

[mm] \bruch{1}{3}\int_{0}^{1} (u-1)\wurzel{u}\, [/mm] du

Jetzt habe ich partiell weitergemacht.
U=(u-1) und [mm] V'=\wurzel{u} [/mm]
U'=1 und [mm] V=\bruch{2}{3}u^{\bruch{3}{2}} [/mm]

[mm] \bruch{1}{3}[(u-1)*\bruch{2}{3}u^{\bruch{3}{2}}-\bruch{2}{3}\int_{0}^{1} u^{\bruch{3}{2}}\, [/mm] du ]

[mm] \bruch{1}{3}[(u-1)*\bruch{2}{3}u^{\bruch{3}{2}}-\bruch{2}{3}*\bruch{2}{5}u^{\bruch{5}{2}}] [/mm]

Rücksubstitoiert:

[mm] \bruch{1}{3}[x^3*\bruch{2}{3}(x^3+1)^{\bruch{3}{2}}-\bruch{4}{15}(x^3+1)^{\bruch{5}{2}}] [/mm]

Wenn ich jetzt x=1 bzw x=0 einsetzt um das bestimmte integral zu lösen komm ich auf 1,62... was irgendwie nicht sein kann.
Findet jemand den Fehler oder hab ich generell müll fabriziert? :D

lg

Bezug
                        
Bezug
Bestimmtes Integral: Tipp
Status: (Antwort) fertig Status 
Datum: 17:02 Di 16.09.2008
Autor: Roadrunner

Hallo Rene!


Ich würde hier die Klammer [mm] $(u-1)*\wurzel{u}$ [/mm] ausmultiplizieren und auf die partielle Integration verzichten.


Gruß vom
Roadrunner


Bezug
                                
Bezug
Bestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Di 16.09.2008
Autor: RENE85

oh man... na logisch :)
ich bin da echt noch etwas blind manchmal.

also wird aus
[mm] \bruch{1}{3}\int_{0}^{1} (u-1)\wurzel{u}\, [/mm] du
[mm] \bruch{1}{3}[\int_{0}^{1} u^{\bruch{3}{2}}\, [/mm] du - [mm] \int_{0}^{1} \wurzel{u}\, [/mm] du ]

[mm] \bruch{1}{3}[\bruch{2}{5}u^{\bruch{5}{2}}-\bruch{2}{3}u^{\bruch{3}{2}}] [/mm]
[mm] \bruch{2}{15}u^{\bruch{5}{2}}-\bruch{2}{9}u^{\bruch{3}{2}} [/mm]

rücksubstituieren:
[mm] \bruch{2}{15}(x^3+1)^{\bruch{5}{2}}-\bruch{2}{9}(x^3+1)^{\bruch{3}{2}} [/mm]


Bezug
                                        
Bezug
Bestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Di 16.09.2008
Autor: schachuzipus

Hallo Rene,

> oh man... na logisch :)
>  ich bin da echt noch etwas blind manchmal.
>  
> also wird aus
> [mm]\bruch{1}{3}\int_{0}^{1} (u-1)\wurzel{u}\,[/mm] du
>  [mm]\bruch{1}{3}[\int_{0}^{1} u^{\bruch{3}{2}}\,[/mm] du -
> [mm]\int_{0}^{1} \wurzel{u}\,[/mm] du ]

Achtung mit den Grenzen! Entweder substituierst du die mit:

[mm] $x=0\Rightarrow u=x^3+1=0^3+1=1$ [/mm]

[mm] $x=1\Rightarrow u=1^3+1=2$ [/mm]

oder du schreibst es komplett ohne Grenzen, rechnest das unbestimmte Integral in u aus, resubstituierst und setzt die "alten Grenzen in x" ein

>  
> [mm]\bruch{1}{3}[\bruch{2}{5}u^{\bruch{5}{2}}-\bruch{2}{3}u^{\bruch{3}{2}}][/mm]
>  
> [mm]\bruch{2}{15}u^{\bruch{5}{2}}-\bruch{2}{9}u^{\bruch{3}{2}}[/mm]
>  
> rücksubstituieren:
>  
> [mm]\bruch{2}{15}(x^3+1)^{\bruch{5}{2}}-\bruch{2}{9}(x^3+1)^{\bruch{3}{2}}[/mm]

[daumenhoch]

Das sieht sehr gut aus, nun noch die Grenzen einsetzen und fertig ist die Laube...

>  

LG

schachuzipus

Bezug
                                                
Bezug
Bestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:07 Di 16.09.2008
Autor: RENE85

super, habs geblickt.
dann nochmal danke an alle die mir hier geholfen haben!!

lg

Bezug
                        
Bezug
Bestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 Di 16.09.2008
Autor: MathePower

Hallo RENE85,

> [mm]\int_{0}^{1} x^5\wurzel{x^3+1}\,[/mm] dx
>  Erstmal danke für den Tip. ;)
>  Hab das soweit mal versucht.
>  
> [mm]u=x^3+1[/mm]
> [mm]\bruch{du}{dx}=3x^2[/mm]
> [mm]dx=\bruch{du}{3x^2}[/mm]
>  
> [mm]\int_{0}^{1} x^5\wurzel{u}\, \bruch{du}{3x^2}[/mm]
>  
> [mm]x^2[/mm] kürzen und [mm]\bruch{1}{3}[/mm] vors integral ziehen.
>  
> [mm]\bruch{1}{3}\int_{0}^{1} x^3\wurzel{u}\,[/mm] du
>  
> [mm]x^3=u-1[/mm]
>  
> [mm]\bruch{1}{3}\int_{0}^{1} (u-1)\wurzel{u}\,[/mm] du
>  
> Jetzt habe ich partiell weitergemacht.
>  U=(u-1) und [mm]V'=\wurzel{u}[/mm]
>  U'=1 und [mm]V=\bruch{2}{3}u^{\bruch{3}{2}}[/mm]
>  
> [mm]\bruch{1}{3}[(u-1)*\bruch{2}{3}u^{\bruch{3}{2}}-\bruch{2}{3}\int_{0}^{1} u^{\bruch{3}{2}}\,[/mm]
> du ]
>  
> [mm]\bruch{1}{3}[(u-1)*\bruch{2}{3}u^{\bruch{3}{2}}-\bruch{2}{3}*\bruch{2}{5}u^{\bruch{5}{2}}][/mm]
>  
> Rücksubstitoiert:
>  
> [mm]\bruch{1}{3}[x^3*\bruch{2}{3}(x^3+1)^{\bruch{3}{2}}-\bruch{4}{15}(x^3+1)^{\bruch{5}{2}}][/mm]
>  
> Wenn ich jetzt x=1 bzw x=0 einsetzt um das bestimmte
> integral zu lösen komm ich auf 1,62... was irgendwie nicht
> sein kann.


Die Stammfunktion hast Du richig ausgerechnet. [ok]

Der Fehler ist wohl beim Einsetzen von x=1 bzw. x=0 passiert.


>  Findet jemand den Fehler oder hab ich generell müll
> fabriziert? :D
>  
> lg


Gruß
MathePower

Bezug
                                
Bezug
Bestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Di 16.09.2008
Autor: RENE85

Ah, ok. Das kann sein. Danke fürs kontrollieren. ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de