www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Bestimmtes Integral ableiten
Bestimmtes Integral ableiten < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmtes Integral ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Mi 20.02.2013
Autor: acid

Aufgabe
Gegeben sei die Funktion f : (0, [mm] \infty) \to \IR [/mm]

f(x) = [mm] \integral_{0}^{x}{\frac{1}{\sqrt{(1+t^2)(2+t^2)}} dt} [/mm]

Begründen Sie, dass f auf (0, [mm] \infty) [/mm] differenzierbar ist und berechnen Sie f'(x) für jedes x [mm] \in [/mm] (0, [mm] \infty). [/mm]

Hallo!

Ich habe mir das hier überlegt. Wenn wir die Stammfunktion G(t) nennen, dann können wir das Integral ja einfach ausrechnen:

f(x) = G(x) - G(0)

Wenn ich das ganze jetzt ableite, müsste ich doch auf f' kommen. Also:

f'(x) = g(x) - g(0)
f'(x) = [mm] \frac{1}{\sqrt{(1+x^2)(2+x^2)}} [/mm] - [mm] \frac{1}{\sqrt{1 \cdot 2}}... [/mm]

In der Lösung steht aber nur f'(x) = [mm] \frac{1}{\sqrt{(1+x^2)(2+x^2)}} [/mm] (was auch irgendwie mehr Sinn macht).

Wo ist mein Fehler? Muss ich alles mit der Kettenregel ableiten?

Viele Grüße
acid

        
Bezug
Bestimmtes Integral ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Mi 20.02.2013
Autor: abakus


> Gegeben sei die Funktion f : (0, [mm]\infty) \to \IR[/mm]
>  
> f(x) = [mm]\integral_{0}^{x}{\frac{1}{\sqrt{(1+t^2)(2+t^2)}} dt}[/mm]
>  
> Begründen Sie, dass f auf (0, [mm]\infty)[/mm] differenzierbar ist
> und berechnen Sie f'(x) für jedes x [mm]\in[/mm] (0, [mm]\infty).[/mm]
>  Hallo!
>  
> Ich habe mir das hier überlegt. Wenn wir die Stammfunktion
> G(t) nennen, dann können wir das Integral ja einfach
> ausrechnen:
>  
> f(x) = G(x) - G(0)

... und G(0) ist irgendeine konstante Zahl.
Reicht das?
Gruß Abakus


>  
> Wenn ich das ganze jetzt ableite, müsste ich doch auf f'
> kommen. Also:
>  
> f'(x) = g(x) - g(0)
>  f'(x) = [mm]\frac{1}{\sqrt{(1+x^2)(2+x^2)}}[/mm] - [mm]\frac{1}{\sqrt{1 \cdot 2}}...[/mm]
>  
> In der Lösung steht aber nur f'(x) =
> [mm]\frac{1}{\sqrt{(1+x^2)(2+x^2)}}[/mm] (was auch irgendwie mehr
> Sinn macht).
>  
> Wo ist mein Fehler? Muss ich alles mit der Kettenregel
> ableiten?
>  
> Viele Grüße
>  acid


Bezug
                
Bezug
Bestimmtes Integral ableiten: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:43 Mi 20.02.2013
Autor: acid

Ah, okay. Vielen Dank!

Was wäre denn z.B. mit G(2x), da müsste ich die Kettenregel anwenden, oder?

Bezug
                        
Bezug
Bestimmtes Integral ableiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 Mi 20.02.2013
Autor: Al-Chwarizmi


> Ah, okay. Vielen Dank!
>  
> Was wäre denn z.B. mit G(2x), da müsste ich die
> Kettenregel anwenden, oder?


Nimm dir doch bitte die kleine Mühe, eine klar
verständliche Frage zu stellen !

LG


Bezug
        
Bezug
Bestimmtes Integral ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 06:31 Do 21.02.2013
Autor: fred97

Ist I ein Intervall in [mm] \IR [/mm] und g eine auf I stetige Funktion, so kann man, mit einem festen a [mm] \in [/mm] I definieren:


    [mm] f(x)=\integral_{a}^{x}{g(t) dt} [/mm]   (x [mm] \in [/mm] I)

Der Hauptsatz der Differential - und Integralrechnung besagt:

f ist auf I differenzierbar und f'(x)=g(x) für jedes x aus I.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de