www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Bestimmung Hoch/Tiefpunkte R3
Bestimmung Hoch/Tiefpunkte R3 < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung Hoch/Tiefpunkte R3: Extremwerte einer R3-Funktion
Status: (Frage) beantwortet Status 
Datum: 19:19 Do 16.12.2010
Autor: ApoY2k

Aufgabe
Bestimmen Sie die Koordinaten der Extremwerte der Funktion f = xyz unter der Nebenbedingung x2 + y2 + z2 = 3. Um welche Arten von Extremwerten handelt es sich?


Hallo ihr.

Ich habe zu der oben genannten Aufgabe die Werte der Extremstellen herausgefunden (Lagrange-Verfahren mit Nebenbedigung). Soweit war das nicht sonderlich schwer.

Jetzt stell ich mir aber die Frage, wie ich die Art der Werte bestimmen soll. Im eindimensionalen läuft das über die zweiten Ableitungen, also wird das hier wohl ähnlich sein.

Aber welche der 6 zweiten Ableitungen (fxx, fxy, fxz, fyy, fyz, fzz) soll ich dafür verwenden? Oder muss ich dafür die Hessematrix, die von diesen gebildet wird, in irgendeiner Form genauer bestimmen?

Die Werte der Punkte dort einsetzen und dann die Determinante anschauen? Aber was für einen Punkt habe ich dann, wenn die Det. > 0, < 0 oder sogar = 0 ist?


Ich hoffe, jemand kann meine Fragen verstehen und sie beantworten, bis dann =)


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimmung Hoch/Tiefpunkte R3: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Do 16.12.2010
Autor: MathePower

Hallo ApoY2k,


[willkommenmr]


> Bestimmen Sie die Koordinaten der Extremwerte der Funktion
> f = xyz unter der Nebenbedingung x2 + y2 + z2 = 3. Um
> welche Arten von Extremwerten handelt es sich?
>  
> Hallo ihr.
>  
> Ich habe zu der oben genannten Aufgabe die Werte der
> Extremstellen herausgefunden (Lagrange-Verfahren mit
> Nebenbedigung). Soweit war das nicht sonderlich schwer.
>  
> Jetzt stell ich mir aber die Frage, wie ich die Art der
> Werte bestimmen soll. Im eindimensionalen läuft das über
> die zweiten Ableitungen, also wird das hier wohl ähnlich
> sein.


Löse die Nebenbedingung nach einer Variablen auf,
und setze dies dann in die Hauptbedingung ein.

Dann hast Du eine Funktion von nur noch 2 Variablen.

Von dieser Funktion kannst Du dann die Hesse-Matrix betrachten.


>  
> Aber welche der 6 zweiten Ableitungen (fxx, fxy, fxz, fyy,
> fyz, fzz) soll ich dafür verwenden? Oder muss ich dafür
> die Hessematrix, die von diesen gebildet wird, in
> irgendeiner Form genauer bestimmen?
>  
> Die Werte der Punkte dort einsetzen und dann die
> Determinante anschauen? Aber was für einen Punkt habe ich
> dann, wenn die Det. > 0, < 0 oder sogar = 0 ist?
>  


Siehe []Hesse-Matrix.


>
> Ich hoffe, jemand kann meine Fragen verstehen und sie
> beantworten, bis dann =)
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de