www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Bestimmung Minimalpolynom
Bestimmung Minimalpolynom < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung Minimalpolynom: Minimalpolynome
Status: (Frage) beantwortet Status 
Datum: 14:32 So 06.06.2010
Autor: Lysin

Aufgabe
Aufgabe:Minimalpolynom.
Es seien K ein Körper und n [mm] \in\ [/mm] N mit 0. Man bestimme das Minimalpolynom der Alles-1-Matrix.

[mm] \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \dots & \vdots \\ 1 & \cdots & 1 \end{bmatrix} [/mm]
[mm] \in\ [/mm] K^nxn

Hallo zusammen!

Also ich sitze hier bei der Aufgabe und weiß nicht so recht wie ich damit umgehen soll,  da die Matrix immer weiter geht und ich ein Minimalpolynom ausrechnen soll?? Also wie man ein Minimalpolynom ausrechnet weiß ich: Man berechnet zunächst das charakteristische Polynom und setzt dann für x in die verschiedenen Grade des char. Polynoms [mm] (x,x^2,x^3...) [/mm] die Matrix ein und schaut, ob irgendwann Null rauskommt.
Beim charakteristischen Polynom fängt das Problem schon an, weil ich nicht so ganz weiß wie ich die Determinante ausrechnen soll?

Über jede Hilfe wäre ich sehr dankbar.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Lieben Gruß

        
Bezug
Bestimmung Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 So 06.06.2010
Autor: swifty88

Sei A eine quadratische Matrix,
das charakteristsiche Polynom von A ist dann wie folgt definiert:
P(x) = det(A-x*I)
Du musst also erstmal von deiner Matrix A die x-fache Einheitsmatrix abziehen.
Was ist nun x*I? Eine quadratische Matrix der Dimension von A wobei auf der Diagonalen x steht und sonst Nullen.. ziehst du das ganze nun von A ab erhältst du eine Matrix die gleich der alten ist mit Ausnahme dessen dass von den Einträgen der Hauptdiagonalen x subtrahiert wird.
Hast du das soweit aufgeschrieben gehts nun an die Determinantenberechnung.
Dazu gibt es verschiedene Möglichkeiten. Kennst du den Gauß-Algorithmus? bzw. weißt du wie man Matrizen auf Zeilen/Stufenform bringt?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de