www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Bestimmung der Ableitung
Bestimmung der Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung der Ableitung: h-Methode
Status: (Frage) beantwortet Status 
Datum: 17:10 So 05.01.2020
Autor: chris_muc

Liebe alle,

ist es möglich die Ableitung einer Funktion f an der Stelle [mm] x_{0} [/mm] über die h-Methode mit den Ansatz
[mm] f´(x_{0})=\limes_{h\rightarrow\infty}\bruch{f(x_{0}-h)-f(x_{0})}{h} [/mm] zu bestimmen?

Meiner Meinung nach ist es nicht möglich, was rechnerisch (vermeintlich) leicht zu zeigen ist. Vorzeichen passt nicht.

Wie sieht eine Begründung geometrisch betrachtet über die Sekantensteigung aus? Kann mir da jemand helfen?

Lieben Dank
Gruß

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Bestimmung der Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 So 05.01.2020
Autor: Gonozal_IX

Hiho,

> ist es möglich die Ableitung einer Funktion f an der
> Stelle [mm]x_{0}[/mm] über die h-Methode mit den Ansatz
> [mm]f´(x_{0})=\limes_{h\rightarrow\infty}\bruch{f(x_{0}-h)-f(x_{0})}{h}[/mm]
> zu bestimmen?

Vorweg: Ich gehe davon aus, dass du [mm] $\lim_{h\to 0}$ [/mm] meinst, ansonsten macht der ganze Ausdruck keinen Sinn.
Das kommt darauf an, was du mit "bestimmen" meinst.
Die so definierte Ableitung hat halt nur das umgekehrte Vorzeichen zur "normalen" Definition. Wenn dir das bewusst ist, kann man die "normale" Ableitung ganz normal berechnen über [mm] $f'_{\text{chris\_muc}}(x_{0}) [/mm]  = [mm] -f'(x_0)$ [/mm]

> Meiner Meinung nach ist es nicht möglich, was rechnerisch
> (vermeintlich) leicht zu zeigen ist. Vorzeichen passt nicht.

Wenn deine Frage war, ob der Wert der Ableitung identisch ist mit der Standarddefinition: Nein, sie unterscheiden sich im Vorzeichen.

> Wie sieht eine Begründung geometrisch betrachtet über die
> Sekantensteigung aus? Kann mir da jemand helfen?

Die Sekante, die da heraus kommt, ist exakt die selbe, wie vorher auch.
Allerdings entspricht die oben definierte Ableitung dann eben nicht mehr der Sekantensteigung, sondern definitionsgemäß der negativen Sekantensteigung.
Das sieht man aber besser, wenn man obiges in die [mm] $x-x_0$-Form [/mm] umformt.

D.h. deine Definition ist weniger "natürlich" und geometrisch nicht mehr ganz so schön.

Gruß,
Gono

Bezug
                
Bezug
Bestimmung der Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:40 So 05.01.2020
Autor: chris_muc

Entschuldige, mein Fehler. Ok, verstehe ich! Danke


Wenn ich mir jedoch geometrisch meine Sekante durch die Punkte in [mm] x_{0} [/mm] und [mm] x_{0}+h [/mm] im Vergleich zu der Sekante durch [mm] x_{0} [/mm] und [mm] x_{0}-h [/mm] vorstelle, dann laufen doch beide durch den Grenzwertprozess für [mm] h\rightarrow\ [/mm] 0 auf die gleiche Tangente. Wieso stimmen sie dann im Vorzeichen nicht überein?

Viele Grüße

Bezug
                        
Bezug
Bestimmung der Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 So 05.01.2020
Autor: Gonozal_IX

Hiho,

> Wenn ich mir jedoch geometrisch meine Sekante durch die
> Punkte in [mm]x_{0}[/mm] und [mm]x_{0}+h[/mm] im Vergleich zu der Sekante
> durch [mm]x_{0}[/mm] und [mm]x_{0}-h[/mm] vorstelle, dann laufen doch beide
> durch den Grenzwertprozess für [mm]h\rightarrow\[/mm] 0 auf die
> gleiche Tangente.

Korrekt, darum schrieb ich ja: Geometrisch erhältst du die selbe Sekanten (und damit im Grenzprozess die selbe Tangente).

> Wieso stimmen sie dann im Vorzeichen nicht überein?

Weil der "normale" Ausdruck [mm] $\frac{f(x_0 + h) - f(x)}{h}$ [/mm] ja gar nicht die Sekante selbst beschreibt, sondern den Anstieg der Sekanten!

Und das ist bei deiner Definition eben nicht mehr der Fall.
Deine Definition [mm] $\frac{f(x_0 - h) - f(x)}{h}$ [/mm] beschreibt die negative Sekantensteigung. D.h. im Grenzprozess erhältst du dann eben die negative Tangentensteigung.

Gruß,
Gono



Bezug
                                
Bezug
Bestimmung der Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 So 05.01.2020
Autor: chris_muc

Ahhh, das macht Sinn! :)

Lieben Dank!

Bezug
                        
Bezug
Bestimmung der Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 Di 07.01.2020
Autor: fred97

[mm] $\limes_{h\rightarrow 0}\bruch{f(x_{0}-h)-f(x_{0})}{h}=-\limes_{h\rightarrow 0}\bruch{f(x_{0}-h)-f(x_{0})}{-h}=-f'(x_0).$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de