www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Bestimmung der Bijektivität
Bestimmung der Bijektivität < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung der Bijektivität: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:46 Sa 12.11.2005
Autor: tina21

hallo Leute!!
Wer kann mir helfen:
Wie zeige ich rechnerisch und grafisch, dass eine Funktion bijektiv,surjektiv oder injektiv ist?
Ich habe zwar schon in Büchern nachgeschaut,aber ich denke, ich bräuchte mal eine simple,aussagekräftige Erklärung dazu.
Vielen Dank schonmal!!! Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimmung der Bijektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 12:57 Sa 12.11.2005
Autor: Bastiane

Hallo!

> hallo Leute!!
>  Wer kann mir helfen:
>  Wie zeige ich rechnerisch und grafisch, dass eine Funktion
> bijektiv,surjektiv oder injektiv ist?
>  Ich habe zwar schon in Büchern nachgeschaut,aber ich
> denke, ich bräuchte mal eine simple,aussagekräftige
> Erklärung dazu.
>  Vielen Dank schonmal!!! Ich habe diese Frage in keinem
> Forum auf anderen Internetseiten gestellt.

Also Injektivität ist recht einfach: du nimmst zwei "angeblich" unterschiedliche Werte x und y und betrachtest deren Bilder f(x) und f(y) und behauptest, dass diese beiden Bilder gleich sind. Dann folgerst du daraus, dass auch x und y gleich sein müssen.
Oder du nimmst zwei unterschiedliche Werte x und y und zeigst direkt, dass ihre Bilder f(x) und f(y) gleich sein müssen.

Bei der Surjektivität weiß ich selber nie, wie ich das vernünftig mathematisch aufschreibe. Am einfachsten sind immer Gegenbeispiele - sowohl bei der Injektivität als auch bei der Surjektivität. Wenn eine Funktion nicht injektiv ist, kannst du zwei unterschiedliche x- und y-Werte angeben, deren Bild aber gleich ist (Beispiel: [mm] f(x)=x^2, [/mm] x=1, y=-1 [mm] \Rightarrow [/mm] f(x)=1=f(y)). Bei der Surjektivität nimmst du ein y=f(x), das kein Urbild hat (z. B. [mm] f(x)=\wurzel{x}, [/mm] y=f(x)=-1 [mm] \Rightarrow \not\exists [/mm] x mit f(x)=-1 - jedenfalls in den reellen Zahlen).

Naja, und wenn du Injektivität und Surjektivität gezeigt hast, hast du ja schon die Bijektivität gezeigt.

Viele Grüße
Bastiane
[cap]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de