www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Bestimmung der Mächtigkeit
Bestimmung der Mächtigkeit < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung der Mächtigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Fr 11.04.2014
Autor: X3nion

Aufgabe
Sei n [mm] \in \IN. [/mm] Man bestimme die Anzahl aller Tripel [mm] (k_{1}, k_{2}, k_{3}) \in \IN^{3} [/mm] mit [mm] k_{1} [/mm] + [mm] k_{2} [/mm] + [mm] k_{3} [/mm] = n.

Einen wunderschönen guten Abend zusammen!

Ich habe eine Frage zu folgender Aufgabe. Im Endeffekt bestimme ich ja nichts anderes als die Mächtigkeit der Menge M bestehend aus den Tripeln [mm] (k_{1}, k_{2}, k_{3}) [/mm] , sodass [mm] k_{1} [/mm] + [mm] k_{2} [/mm] + [mm] k_{3} [/mm] = n.

Ist n=0:  [mm] M_{0} [/mm] = [mm] \{ (0,0,0) \} [/mm]  => [mm] |M_{0}| [/mm] = 1

Ist n=1: [mm] M_{1} [/mm] = [mm] \{ (1,0,0) , (0,1,0), (0,0,1) \} [/mm] => [mm] |M_{1}| [/mm] = 3

Ist n=2: [mm] M_{2} [/mm] = [mm] \{ (1,1,0), (1,0,1), (0,1,1), (2,0,0), (0,2,0), (0,0,2) \} [/mm] => [mm] |M_{2}| [/mm] = 6

Ist n=3: [mm] M_{3}= \{ (3,0,0) , (0,3,0), (0,0,3), (2,1,0), (2,0,1), (1,2,0), (1,0,2), (0,1,2), (0,2,1), (1,1,1) \} [/mm] => [mm] |M_{3}| [/mm] = 10

Ist n=4: [mm] |M_{4}| [/mm] = 15

... Insgesamt komme ich auf die Vermutung, dass sich die Differenz zwischen den Mächtigkeiten immer um 1 erhöht, also:
[mm] |M_{1}| [/mm] - [mm] |M_{0}| [/mm] = 2
[mm] |M_{2}| [/mm] - [mm] |M_{1}| [/mm] = 3
[mm] |M_{3}| [/mm] - [mm] |M_{2}| [/mm] = 4
[mm] |M_{4}| [/mm] - [mm] |M_{3}| [/mm] = 5

Und insgesamt komme ich somit auf folgende Formel zur Berechnung der Mächtigkeit: [mm] \summe_{k=0}^{n} [/mm] (k+1)  bzw. explizit bestimmt: [mm] \frac{(n+1)(n+2)}{2} [/mm]

Die Frage aller Fragen ist nun jedoch: Wie beweise ich, dass die Summenformel bzw. die explizite Formel gilt? Ich habe ja nur den Verdacht dass sich die Differenz der Mächtigkeiten jeweils um 1 erhöht!

Viele Grüße und auf Antwort hoffend,
Christian! ;-)

        
Bezug
Bestimmung der Mächtigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Fr 11.04.2014
Autor: hippias

Man koennte versuchen einen Zusammenhang zwischen den Tripeln aus [mm] $M_{n}$ [/mm] und [mm] $M_{n+1}$ [/mm] herzustellen, der eine Funktion [mm] $f:M_{n}\to M_{n+1}$ [/mm] liefert. Wenn sie Injektiv ist, wuesste man schon einmal, dass [mm] $|M_{n+1}|= |M_{n}|+x_{n}$ [/mm] ist, wobei [mm] $x_{n}:= |M_{n+1}\backslash f(M_{n})|$ [/mm] ist (der Rest). Wenn man diesen Rest noch auszaehlen kann, dann waere man fertig.

Mein Tip: Zerlege [mm] $M_{n+1}$ [/mm] in die Tupel, deren erster Eintrag $=0$ ist und die, deren erster Eintrag $>0$ ist. Die ersteren Tupel sollten sich gut durchzaehlen lassen. Ueberlege Dir dann, dass die Menge der anderen Tupel gleichmaechtig zu [mm] $M_{n}$ [/mm] ist.

Bezug
        
Bezug
Bestimmung der Mächtigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Fr 11.04.2014
Autor: abakus


> Sei n [mm]\in \IN.[/mm] Man bestimme die Anzahl aller Tripel [mm](k_{1}, k_{2}, k_{3}) \in \IN^{3}[/mm]
> mit [mm]k_{1}[/mm] + [mm]k_{2}[/mm] + [mm]k_{3}[/mm] = n.
> Einen wunderschönen guten Abend zusammen!

>

> Ich habe eine Frage zu folgender Aufgabe. Im Endeffekt
> bestimme ich ja nichts anderes als die Mächtigkeit der
> Menge M bestehend aus den Tripeln [mm](k_{1}, k_{2}, k_{3})[/mm] ,
> sodass [mm]k_{1}[/mm] + [mm]k_{2}[/mm] + [mm]k_{3}[/mm] = n.

>

> Ist n=0: [mm]M_{0}[/mm] = [mm]\{ (0,0,0) \}[/mm] => [mm]|M_{0}|[/mm] = 1

>

> Ist n=1: [mm]M_{1}[/mm] = [mm]\{ (1,0,0) , (0,1,0), (0,0,1) \}[/mm] =>
> [mm]|M_{1}|[/mm] = 3

>

> Ist n=2: [mm]M_{2}[/mm] = [mm]\{ (1,1,0), (1,0,1), (0,1,1), (2,0,0), (0,2,0), (0,0,2) \}[/mm]
> => [mm]|M_{2}|[/mm] = 6

>

> Ist n=3: [mm]M_{3}= \{ (3,0,0) , (0,3,0), (0,0,3), (2,1,0), (2,0,1), (1,2,0), (1,0,2), (0,1,2), (0,2,1), (1,1,1) \}[/mm]
> => [mm]|M_{3}|[/mm] = 10

>

> Ist n=4: [mm]|M_{4}|[/mm] = 15

>

> ... Insgesamt komme ich auf die Vermutung, dass sich die
> Differenz zwischen den Mächtigkeiten immer um 1 erhöht,
> also:
> [mm]|M_{1}|[/mm] - [mm]|M_{0}|[/mm] = 2
> [mm]|M_{2}|[/mm] - [mm]|M_{1}|[/mm] = 3
> [mm]|M_{3}|[/mm] - [mm]|M_{2}|[/mm] = 4
> [mm]|M_{4}|[/mm] - [mm]|M_{3}|[/mm] = 5

>

> Und insgesamt komme ich somit auf folgende Formel zur
> Berechnung der Mächtigkeit: [mm]\summe_{k=0}^{n}[/mm] (k+1) bzw.
> explizit bestimmt: [mm]\frac{(n+1)(n+2)}{2}[/mm]

>

> Die Frage aller Fragen ist nun jedoch: Wie beweise ich,
> dass die Summenformel bzw. die explizite Formel gilt? Ich
> habe ja nur den Verdacht dass sich die Differenz der
> Mächtigkeiten jeweils um 1 erhöht!

>

> Viele Grüße und auf Antwort hoffend,
> Christian! ;-)

Hallo,
du kommst sicher schnell zum Ziel, wenn du keine Fallunterscheidung über mögliche n machst, sondern für ein beliebiges festes n über die möglichen Werte von [mm] $k_1$. [/mm]
Für [mm] $k_1=n$ [/mm] gibt es nur eine Möglichkeit (die beiden anderen Summanden sind 0).
 Für [mm] $k_1=n-1$ [/mm] gibt es nur zwei Möglichkeit (die beiden anderen Summanden sind 0+1 oder 1+0). 
  Für [mm] $k_1=n-2$ [/mm] gibt es nur drei Möglichkeit (die beiden anderen Summanden sind 0+2 oder 1+1 oder 2+0).  
...
  Für [mm] $k_1=0 [/mm] $ gibt es (n+1) Möglichkeit (die beiden anderen Summanden sind 0+n, 1+(n-1), 2+(n-2),...,n+0).  
Also gibt es insgesamt 1+2+3+...+(n+1) Möglichkeiten.
(Siehe "Gaußsche Summenformel" 
und "Dreieckszahlen).
Gruß Abakus

Bezug
        
Bezug
Bestimmung der Mächtigkeit: Mach so
Status: (Antwort) fertig Status 
Datum: 22:42 Fr 11.04.2014
Autor: HJKweseleit

Die folgende Idee funktioniert mit beliebig vielen Summanden, deren Anzahl fest vorgegeben ist:

Bilde eine Kette aus n+k-1 Kästchen für die Zahl n und die k Summanden, hier also n+2.

Suche dir k-1 (also hier 2) von diesen Kästchen aus und schreibe ein Kreuz hinein. n Kästchen bleiben frei.
Die freien Kästchen links vom ersten Kreuz bilden den ersten Summanden, die zwischen dem ersten und zweiten Kreuz den zweiten, die zwischen dem zweiten und dritten den dritten Summanden usw. und die hinter dem letzten Kreuz den letzten Summanden. Folgen zwei Kreuze direkt aufeinander, so ist der Summand zwischen ihnen 0.

Du bekommst nun die Anzahl aller möglichen Summanden, indem du alle Möglichkeiten berechnest, wie du aus n+k-1 Kästchen k-1 für die Kreuze aussuchen kannst. Dafür gibt es genau [mm] \vektor{n+k-1 \\ k-1} [/mm] Möglichkeiten.

In deinem Beispiel mit k=3 sind das [mm] \vektor{n+2 \\ 2}= \bruch{(n+2)!}{n!*2!}=\bruch{(n+2)(n+1)}{2} [/mm]


Beispiel: [mm] \Box\Box\Box\Box X\Box\Box X\Box\Box\Box [/mm] entspricht 4+2+3=9
[mm] \Box\Box\Box\Box X\Box\Box\Box\Box\Box [/mm] X entspricht 4+5+0=9

Bezug
                
Bezug
Bestimmung der Mächtigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:03 Do 17.04.2014
Autor: X3nion

Hallo Leute!
Vielen vielen Dank euch für eure Bemühungen, ich habe alles verstaneden und es ist mir voll und ganz ersichtlich! ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de