www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Bestimmung einer Fläche
Bestimmung einer Fläche < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung einer Fläche: unklar
Status: (Frage) beantwortet Status 
Datum: 19:01 Do 14.01.2010
Autor: niemand0

Aufgabe
Gegeben ist die Funktion [mm] -0.5x^3+1.5x^2. [/mm] Der Graph von f wird mir K bezeichnet.
a) unterscuhen sie f und zeichnen sie den graphen.
b)berechnen sie den inhalt der Fläche, die K mit der X-Achse einschliest.
C)Die tangente im hochpunkt von k, die y-achse und K begrenzt mit k eine fläche. Berechnen sie den inhalt dieser Fläche.

aloah,
also a) ist ja kein problem
wenn man [mm] -0.5x^3+1.5x^2 [/mm] intigriert kommt da ja :
[mm] x^3(0.5-0.125x) [/mm] raus oder?
und bei b ist die fläche  die in der x achse eingerenzt wird so.
[mm] \integral_{0}^{3}{f(x) dx} [/mm] denke ich.

jetzt zu meiner frage ob ich das richtig mache
[mm] \integral_{0}^{3}{f(x) dx} [x^3(0,5-0.125x)] [/mm] obere grente halt 3 und die untere 0 .

also : [mm] [3^3(0,5-0.125*3)] -[0^3(0,5-0.125*0)] [/mm]

        
Bezug
Bestimmung einer Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Do 14.01.2010
Autor: Steffi21

Hallo,

b) Stammfunktion, Grenzen und Einsetzen der Grenzen - korrekt
in der vorletzten Zeile fehlt aber ein Gleichheitszeichen

Steffi



Bezug
                
Bezug
Bestimmung einer Fläche: rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:48 Do 14.01.2010
Autor: niemand0

dann habe ich da A=3.375 raus
aber ich habe leider keinen ansatz für die aufgabe c

Bezug
                        
Bezug
Bestimmung einer Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Do 14.01.2010
Autor: Steffi21

Hallo, berechne zunächst, an welcher Stelle [mm] x_h [/mm] liegt das Maximun, dann [mm] f(x_h), [/mm] dann hast du die Tangentengleichung y= ...., eine Parallele zur x-Achse, und immer eine Skizze machen, Steffi

Bezug
                                
Bezug
Bestimmung einer Fläche: rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:14 Do 14.01.2010
Autor: niemand0

okay das habe ich gemacht der hp ist ja bei 2/2
und die gleichung die parallel zu x achse verläuft ist ja dann y=2
und  habe ich dan den integralbereich von [mm] \integral_{0}^{2}{f(x) dx} [/mm] ?
oder wie gehe ich da jetzt vor mir der aufleitung von y=2 ist ja gleich Y=2x
aber wie fahre ich fort?
bzw kann mir einer sagen ob A=3.375 beib richhtig ist?

Bezug
                                        
Bezug
Bestimmung einer Fläche: nicht richtig
Status: (Antwort) fertig Status 
Datum: 23:30 Do 14.01.2010
Autor: Loddar

Hallo niemand0!


> okay das habe ich gemacht der hp ist ja bei 2/2
> und die gleichung die parallel zu x achse verläuft ist ja
> dann y=2

[ok]


>  und  habe ich dan den integralbereich von
> [mm]\integral_{0}^{2}{f(x) dx}[/mm] ?

Das ist aber nicht die gesuchte Fläche. Hast Du Dir mal eine Skizze gemacht?

[Dateianhang nicht öffentlich]


>  oder wie gehe ich da jetzt vor mir der aufleitung von y=2
> ist ja gleich Y=2x

[ok]


> aber wie fahre ich fort?

Berechne das Integral [mm] $\integral_0^2{2-f(x) \ dx}$ [/mm] .


>  bzw kann mir einer sagen ob A=3.375 beib richhtig ist?

Das stimmt nicht ...


Gruß
Loddar


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de