www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Bestimmung einer Wahrsch.
Bestimmung einer Wahrsch. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung einer Wahrsch.: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:23 Mo 24.05.2010
Autor: Darksen

Aufgabe
Im Land Fantasie gibt es 40 Millionen Wahlberechtigte. Davon würden 10 Millionen die Partei ProFantasia wählen. Es werden zufällig 1000 Fatasianer ausgewählt und nach ihrem Wahrverhalten befragt (dabei wird davon ausgegangen, dass die Befragten ehrlich antworten). Ermitteln sie näherungsweise die Wahrscheinlich dafür, dass unter den 1000  Befragten
(a) weniger als 200
(b) mehr als 300
die Partei ProFantasia wählen würden.
Schätzen Sie die Wahrscheinlichkeit auch durch Simulation.

Moin.
Habe mich zu der oben genannten Aufgabe ein wenig schlau gemacht (oder es versucht :p), bin mir aber nicht einig, dass es so auch stimmt; daher wollte ich mal fragen, ob der Ansatz so stimmt und ob es so gerechnet werden kann/darf/soll ...
Habe dann für (a) die folgende Formel benutzt:

[mm] \summe_{i=0}^{199}\vektor{1000\\i}*0.5^{i}*(1-0.5)^{1000-i} [/mm]

und stehe jetzt wie gesagt auf dem Schlauch, ob das so richtig ist...
Mag mir da mal bitte jemand ein Feedback zu geben und es ggf. korrigieren und erklären? :D

Danke und Greetz
Darksen

        
Bezug
Bestimmung einer Wahrsch.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Mo 24.05.2010
Autor: abakus


> Im Land Fantasie gibt es 40 Millionen Wahlberechtigte.
> Davon würden 10 Millionen die Partei ProFantasia wählen.
> Es werden zufällig 1000 Fatasianer ausgewählt und nach
> ihrem Wahrverhalten befragt (dabei wird davon ausgegangen,
> dass die Befragten ehrlich antworten). Ermitteln sie
> näherungsweise die Wahrscheinlich dafür, dass unter den
> 1000  Befragten
>  (a) weniger als 200
>  (b) mehr als 300
>  die Partei ProFantasia wählen würden.
>  Schätzen Sie die Wahrscheinlichkeit auch durch
> Simulation.
>  Moin.
>  Habe mich zu der oben genannten Aufgabe ein wenig schlau
> gemacht (oder es versucht :p), bin mir aber nicht einig,
> dass es so auch stimmt; daher wollte ich mal fragen, ob der
> Ansatz so stimmt und ob es so gerechnet werden
> kann/darf/soll ...
>  Habe dann für (a) die folgende Formel benutzt:
>  
> [mm]\summe_{i=0}^{199}\vektor{1000\\i}*0.5^{i}*(1-0.5)^{1000-i}[/mm]

Hallo,
die 0,5 in deiner Formel ist falsch.
Da 10 Mio. von 40 Mio. die Partei wählen würden, ist die Wahrscheinlichkeit 0,25 (die Gegenwahrscheinlichkeit entsprechend 0,75.
Gruß Abakus

>  
> und stehe jetzt wie gesagt auf dem Schlauch, ob das so
> richtig ist...
>  Mag mir da mal bitte jemand ein Feedback zu geben und es
> ggf. korrigieren und erklären? :D
>
> Danke und Greetz
>  Darksen


Bezug
                
Bezug
Bestimmung einer Wahrsch.: Weitergehende Frage
Status: (Frage) beantwortet Status 
Datum: 13:40 Mo 24.05.2010
Autor: Darksen

Danke für die schnelle Antwort :)
Wäre dann die Lösung für (b)

[mm] 1-\summe_{i=0}^{300}\vektor{1000\\i}*0.75^{i}*(1-0.75)^{1000-i} [/mm]

?
Und wie kann ich das ganze simulieren? Ist damit evtl. ein Baumdiagramm gemeint?

Bezug
                        
Bezug
Bestimmung einer Wahrsch.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Mo 24.05.2010
Autor: abakus


> Danke für die schnelle Antwort :)
>  Wäre dann die Lösung für (b)
>  
> [mm]1-\summe_{i=0}^{300}\vektor{1000\\i}*0.75^{i}*(1-0.75)^{1000-i}[/mm]
>  
> ?
>  Und wie kann ich das ganze simulieren? Ist damit evtl. ein
> Baumdiagramm gemeint?  

Nein,
du kannst ein Urnenexperiment machen (4 Kugeln, eine davon andersfarbig, 1000 mal Ziehen mit zurücklegen, Ergebnisse notieren und zählen).
Wenn du in irgenbdeiner Programmiersprache programmierten kannst, schreibst du ein Programm, das 1000 Zufallszahlen erzeugt.
Am einfachsten ist noch eine Tabellenkalkulation.
In Excel geht das so:
Fülle A1 bis A1000 mit
=Zufallszahl()
Schreibe in B1: =Wenn(A1<0,25;1;0)
Dadurch hat B1 den Wert 1, wenn A1 zwischen 0 und 0,25 liegt, und es hat den Wert 0, wenn A1 zwisdchen 0,25 und 1 liegt.
Kopiere diese Formel nach unten bis in die Zelle B1000.
Schreibe in C1:
=Summe(B1:B1000)
Somit zählst du dort, wie oft in 1000 Versuchen die Zufallszahl im "unteren Viertel" lag.
Durch Drücken auf die Taste F9 erzeugst du 1000 neue Zufallszahlen und kannst den Versuch somit beliebig oft wiederholen.
Gruß Abakus



Bezug
                                
Bezug
Bestimmung einer Wahrsch.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:56 Mo 24.05.2010
Autor: Darksen

Programmieren kann ich in Java, Assembler und C++ ;-) Werde mich aber mal an dein Beispiel halten, danke :)

Da du zur ersten Frage bez. der Lösung nichts gesagt hast; kann ich davon ausgehen, dass die Lösung dann stimmt? ;)

Greetz
Darksen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de