www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Bestimmung von Extrempunkten
Bestimmung von Extrempunkten < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung von Extrempunkten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:17 So 15.01.2006
Autor: moose

Aufgabe
Hallo, meine Aufgabe ist es zu bestimmen, ob die funktion f(x) = (2x-3) / [mm] (x^{2}-4) [/mm]  Extrempunkte aufweist.  

Ich habe dabei nun die erste Ableitung wie folgt bestimmt:

f'(x) =  [mm] -2x^2+6x-8 [/mm]
           -----------------
            [mm] (x^2 -4)^2 [/mm]    
          

wenn ich die ableitung nun 0 setze (also den Nenner), dann erhalte ich 2 und -2 als Extremstellen. Zu diesen Werten gibt es allerdings laut dem Table Menu meines GTR keine Funktionswerte.
Der Rechner selbst, gibt auch die 2 errechneten Stellen als Extrema aus, aber da ich die Aufgabe ja rechnerisch lösen soll bin ich im Moment etwas stutzig. Liegt bei mir irgendwo ein Fehler, oder sind die Stellen doch korrekt? vielen Dank für Unterstüzung!

        
Bezug
Bestimmung von Extrempunkten: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 So 15.01.2006
Autor: Karl_Pech

Hallo moose,


> Hallo, meine Aufgabe ist es zu bestimmen, ob die Funktion
>
>
> [mm]f(x) = \frac{2x-3}{x^2 - 4}[/mm]
>
>
> Extrempunkte aufweist.
>
>
> Ich habe dabei nun die erste Ableitung wie folgt bestimmt:
>  
>
> [mm]f'(x) = \frac{-2x^2 + 6x - 8}{\left(x^2 -4\right)^2}[/mm]    


[ok]


> wenn ich die ableitung nun 0 setze (also den Nenner),


Es genügt ja, daß der Zähler eines Bruches 0 wird, damit der gesamte Bruch 0 wird. Damit erhalten wir:


[mm]\frac{-2x^2 + 6x - 8}{\left(x^2 -4\right)^2} = 0 \Leftrightarrow -2x^2 + 6x - 8 = 0 \Leftrightarrow x^2 - 3x + 4 = 0[/mm]


Nach der [mm]p/q\texttt{--Formel}[/mm] erhalten wir:


[mm]x_{1;2} = 1.5 \pm \sqrt{2.25 - 4}[/mm]


Damit besitzt diese quadratische Gleichung keine reellen Lösungen, und damit hat [mm]f[/mm] auch keine Extremstellen.



Viele Grüße
Karl





Bezug
                
Bezug
Bestimmung von Extrempunkten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:39 So 15.01.2006
Autor: moose

vielen Dank. Wie kann es aber dann sein, dass der Taschenrechner Extremstellen findet im Graphik Menu? Gibt es dafür eine Erklärung?

Bezug
                        
Bezug
Bestimmung von Extrempunkten: Eingabefehler?
Status: (Antwort) fertig Status 
Datum: 11:19 So 15.01.2006
Autor: Loddar

Hallo moose!


Vorausgesetzt der TR arbeitet richtig, kann ich hier nur einen Eingabefehler (z.B. vergessene Klammer o.ä.) vermuten.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de