Bestimmung von Varianz < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | In einem Betrieb werden Arzneiflaschen automatisch abgefüllt, verschlossen etikettiert und verpackt. Die dafür benötigten durchschnittlichen Arbeitszeiten sind mit ihren Standardabweichungen in der Tabelle angegeben. Wie groß ist die Wahrscheinliihkeit, dass für alle 4 Arbeitsgänge mehr als 9s benötigt wird?
E(X) o(x)
Abfüllen 1,5 s 0,2 s
Verschließen 1,0 s 0,1 s
Etikettieren 1,0 s 0,1 s
Verpacken 4,0 s 0,6 s
|
Bei der eben genannten Aufgabe habe ich das Problem das ich die Varianz nicht richtig berechnet bekomme.
Als Ansatz habe ich mir gedacht, dass man zuerst den standartisierten Erwartungswert berechnen muss. Diesen habe ich mit folgender Formel bestimmt:
U= [mm] \bruch{X-E(X)}{o(X)}
[/mm]
X ist in diesem Fall 9
E(X) die einzelnen Teilerwartungswerte aufsummiert, also 7,5
o(X) hier habe ich ebenfalls einfach die Teilvarianzen aufsummiert, also 1
Für U erhalte ich dementsprechend 1,5.
Nun habe ich mein U in die Dichtefunktion der standatisierten Zufallsgröße U eingesetzt und diese in den Grenzen von [mm] -\infty [/mm] bis 1,5 integriert.
[mm] \integral_{-\infty}^{1,5}{f(\bruch{1}{\wurzel{2\pi}}*e^{\bruch{-u^{2}}{2}}) dx}
[/mm]
Hieraus erhalte ich 0,933. Da dies aber die Wahrscheinlichkeit für das Gegenereignis ist ist meine gesuchte Wahrscheinlichkeit 1-0,933=0,067.
Das würde bedeuten das mit einer Wahrscheinlichkeit von 6,7% der Vorgang länger als 9s braucht. In der Lösung, die der Aufgabe beiliegt ist aber eine Wahrscheinlichkeit von 1% angegeben. Leider steht dort nicht der Rechenweg, sondern nur das nackte Ergebnis.
Kann mir jemand helfen?
Vielen Dank, Malte
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:20 Mi 06.12.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|