www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Bestimmung von eLösungen
Bestimmung von eLösungen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung von eLösungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 Fr 18.04.2008
Autor: miamias

Aufgabe
Es sei I [mm] \subset \IR [/mm] ein Intervall, [mm] t_0 \in [/mm] I, [mm] x_0\in \IC [/mm] und a: I [mm] \to \IC [/mm] stetig.
a) Bestimme die eindeutige Lösung [mm] \lambda [/mm] : I [mm] \to \IC [/mm] des Anfangwertproblems x'(t) = a(t)x(t), [mm] x(t_0) [/mm] = [mm] x_0. [/mm]
b)Es sei zusätzlich b: [mm] \to \IC [/mm] stetig. Welche Lösung von x'(t) = a(t)x(t)+b(t) erhält man durch den Ansatz [mm] \mu(t) [/mm] = [mm] c(t)\lambda(t) [/mm]

Hallo,
also bei der a) habe ich folgendes Ergebnis: [mm] \lambda(t) [/mm] = [mm] e^{A(t)-A(t_0)}+x_0, [/mm] wobei [mm] A=\integral{a} [/mm]
aber bei der b) hab ich schon mehrere Versuche gestartet die aber immer zu einem aussichtslosen Punkt führten. Folgende Versuche habe ich schon gestartet: [mm] \mu' [/mm] berechnen und dann nach [mm] \lambda [/mm] bzw. [mm] \lambda' [/mm] auflösen. dann das in die DGL eingesetzt usw. hat mich aber nicht zu einem vernüftigen Ergebnis gebracht.
Dann hab ich schon den gegebenen Ansatz nach [mm] \lambda [/mm] aufgelöst und dann direkt in die DGL eingesetzt, oder dann auch abgeleitet in die DGL eingestzt,bringt aber anscheinend auch nichts vernüftiges.
Daher wäre es klasse wenn mir da jemand helfen könnte.

mfg
miamias


        
Bezug
Bestimmung von eLösungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:45 Fr 18.04.2008
Autor: Blutorange

Edit:
Bei a) muss es heißen:
[mm] \lambda(t) [/mm]  = [mm] e^{A(t)-A(t_0)} [/mm]    *   [mm] x_0 [/mm]


Also... so wie ich das verstanden habe, kommst du zur Lösung, indem du Variation der Konstanten durchführst:
[mm] \mu(t) [/mm]  = [mm] c(t)\lambda(t) [/mm]
[mm] \mu'(t) [/mm]  = [mm] c'(t)\lambda(t)+c(t)*\lambda'(t) [/mm] setzt, diese dann in die Ausgangsgleichung einsetzt:
[mm] c'(t)\lambda(t)+c(t)*\lambda'(t)=a(t)*c(t)\lambda(t)+b(t) [/mm]

Da [mm] \lambda(t)=e^{A(t)} [/mm] ist [mm] \lambda'(t)=a(t)*\lambda(t) [/mm] und oben eingesetzt:
[mm] c'(t)\lambda(t)+c(t)*a(t)*\lambda(t)=a(t)*c(t)\lambda(t)+b(t) [/mm]
[mm] c'(t)\lambda(t)=b(t) [/mm]
[mm] c(t)=\integral{\frac{b(t)}{\lambda(t)}dt}+Konstante [/mm]
[mm] c(t)=\integral{b(t)*e^{-A(t)}dt}+Konstante [/mm]
Damit [mm] \mu(t)=[\integral{b(t)*e^{-A(t)}dt}+Konstante]*e^{A(t)} [/mm]
Und das ist jedenfalls das, was mir auch mein CAS ausgibt...


Wenn du dann noch die Konstante durch Einsetzen ermittelst, müsste rauskommen:
[mm] Konstante=(x_0-b(t_0)*t_0)*e^{-A(t_0)}[/mm]

Bezug
                
Bezug
Bestimmung von eLösungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Fr 18.04.2008
Autor: miamias

Erstmal danke für die rasche Antwort.
Also bei a) war nur ein Schreibfehler meinerseits, aber danke fürs nachrechnen.
Bei b) versteh ich nur einen kleinen Schritt nicht und zwar wie man darauf kommt, dass [mm] \lambda(t)=e^{A(t)} [/mm] , wenn in a) doch [mm] \lambda(t)=e^{A(t)-A(t_0)}*x_0? [/mm]

mfG
miamias

Bezug
                        
Bezug
Bestimmung von eLösungen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:59 Fr 18.04.2008
Autor: Blutorange

Ich habe einfach das allgemeine Integral verwendet und danach wieder die Grenzen ausgewertet, da das etwas weniger Schreibarbeit ist, also
[mm] \lambda(t)=e^{A(t)} [/mm]

(Genau genommen muss das C als Konstante da mit rein, wenn wir das unbestimmte Integral nehmen, kürzt sich aber am Ende raus:
[mm] \lambda(t)=C*e^{A(t)} [/mm]

[mm] \mu(t) [/mm] $  = $ [mm] c(t)\lambda(t) [/mm] = [mm] c(t)*C*e^{A(t)} [/mm]
$ [mm] \mu'(t) [/mm] $  = $ [mm] c'(t)\lambda(t)+c(t)\cdot{}\lambda'(t) [/mm] $ setzt, diese dann in die Ausgangsgleichung einsetzt:
$ [mm] c'(t)\lambda(t)+c(t)\cdot{}\lambda'(t)=a(t)\cdot{}c(t)\lambda(t)+b(t) [/mm] $

Da $ [mm] \lambda(t)=C*e^{A(t)} [/mm] $ ist $ [mm] \lambda'(t)=C*a(t)\cdot{}\lambda(t) [/mm] $ und oben eingesetzt:
$ [mm] c'(t)*\lambda(t)+c(t)\cdot{}a(t)\cdot{}C*e^{A(t)}=a(t)\cdot{}c(t)*C*e^{A(t)}+b(t) [/mm] $
$ [mm] c'(t)\lambda(t)=b(t) [/mm] $
$ [mm] c(t)=\integral{}^{}{\frac{b(t)}{\lambda(t)}dt}+Konstante [/mm] $
$ [mm] c(t)=\bruch{1}{C}\integral{b(t)\cdot{}e^{-A(t)}dt}+Konstante [/mm] $
Damit [mm] \mu(t)=C*[\bruch{1}{C}\integral{b(t)\cdot{}e^{-A(t)}dt}+Konstante]\cdot{}e^{A(t)} [/mm]
[mm] \mu(t)=[\integral{}^{}b(t)\cdot{}e^{-A(t)}+Konstante]\cdot{}e^{A(t)} [/mm]
)

Könntest aber genauso mit dem partikulären arbeiten.


Bezug
                                
Bezug
Bestimmung von eLösungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:50 Sa 19.04.2008
Autor: miamias

Ich denke dassich das jetzt verstanden hab. Danke

Bezug
                                        
Bezug
Bestimmung von eLösungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:13 Sa 19.04.2008
Autor: Blutorange

Wie mir noch auffällt, hast du bei dem partikulären Integral ja der Konstante schon einen Wert zugewiesen. Dann kann man sie nicht mehr variieren, also müsstest du mit der allgemeinen Lösung arbeiten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de