www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Betrag x integrieren?
Betrag x integrieren? < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Betrag x integrieren?: Betrag x
Status: (Frage) beantwortet Status 
Datum: 20:53 Mo 05.03.2007
Autor: RedWing

Hallo.

Wenn ich eine Funktion vom f(x) = |x| habe und diese Integrieren soll, gehe ich dann ganz normal vor und ignoriere einfach die Betragsstriche oder wie müsste ich dort vorgehen?

Die Funktion ist ja stetig, also müsste sie doch auch integrierbar sein oder irre ich mich?

MfG RedWing

        
Bezug
Betrag x integrieren?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Mo 05.03.2007
Autor: angela.h.b.


> Wenn ich eine Funktion vom f(x) = |x| habe und diese
> Integrieren soll, gehe ich dann ganz normal vor und
> ignoriere einfach die Betragsstriche

Hallo,

die Betragsstriche einfach zu ignorieren wäre nicht so ganz normal...


>  oder wie müsste ich dort vorgehen?


Es ist doch [mm] |x|=\begin{cases} x, & \mbox{für } x \ge 0 \mbox{ } \\ -x, & \mbox{für } x< 0 \mbox{ } \end{cases} [/mm]

Nun teilst Du Dein Integral auf in [mm] \integral_{negativ}^{0}{(-x )dx}+\integral_{0}^{positiv}{x dx}. [/mm]


Wenn Dein Integral "symmetrische" Grenzen hat, z.B. [mm] \integral_{-5}^{5}{|x| dx}, [/mm] kannst Du Dir natürlich auch anhand der Symmetrie der Funktion überlegen, daß das  [mm] =2*\integral_{0}^{5}{x dx} [/mm] ist.

Gruß v. Angela




Bezug
                
Bezug
Betrag x integrieren?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:18 Mo 05.03.2007
Autor: RedWing

Und wenn jetzt nach einer Stammfunktion gefragt ist, also nach einem unbestimmten Integral, sagen wir jetzt von:

integral |x+1| dx

Müsste dann eine Stammfunktion folgendermaßen aussehen?
= |2x/2 + x| + c ?

Bezug
                        
Bezug
Betrag x integrieren?: Nicht ganz
Status: (Antwort) fertig Status 
Datum: 23:03 Mo 05.03.2007
Autor: Sirvivor

Also wenn du allgemein die Stammfunktion zu |x+1| wissen willst dann musst du wie zuvor umdenken. Sobald dein Integral in den negativen Bereich wandert musst du also den Betrag der Stammfunktion wählen.

[mm] \integral_{}^{}{f(x) dx}=\integral_{}^{}{|x+1| dx}=\bruch{(x+1)*|x+1|}{2} [/mm]

Hab leider keine Zeit das alles genauer auszuführen

mfg Sir_Vivor

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de