www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Betragsgleichungen
Betragsgleichungen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Betragsgleichungen: Hinweis zur Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:02 Di 13.11.2007
Autor: CarolinchenBienchen

Aufgabe
Berechnen Sie die Lösungsmenge der folgenden Ungleichung und geben Sie diese in Intervallschreibweise an:

[mm] \bruch{{ x-3 }{ 2x+4 }} [/mm] < 1 ;x ? -2

Wahrscheinlich habe ich einfach keine Ahnung wie man mit Beträgen umgeht, denn meine Lösung der Aufgabe ergibt x>-7, x<-1/3, x>-1/3 und x<-7 ! Ich mache es mir leicht, indem ich einfach 4 Fallunterscheidungen mache mit pos-pos Betrag, pos-neg Betrag, neg-neg Betrag und neg-pos Betrag. Das geht nicht, oder? Kann es sein, dass man VORHER prüfen muss, ob der Betrag positiv oder negativ ist und darauf seine Fallunterscheidungen aufbaut? Aber wie, wenn man 2 Beträge im Term hat, wie in der Aufgabe? Danke für Eure Hilfe!!!

        
Bezug
Betragsgleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:06 Di 13.11.2007
Autor: CarolinchenBienchen

ich sehe gerade dass die Gleichung nicht funktioniert. sie siht grundsätzlich so aus "/" ist jetzt einfach betrag:

/x-3/ : /2x+4/ < 1 und x ist ungleich -2

Bezug
                
Bezug
Betragsgleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:18 Di 13.11.2007
Autor: M.Rex

Hallo Caro

Du hast im Quelltext der Formel eine Paar geschweifte Klammern zuvel:

\bruch{|x-3|}{|2x+4|} ergibt deine Formel, nämlich

[mm] \bruch{|x-3|}{|2x+4|} [/mm]

Marius

Bezug
        
Bezug
Betragsgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 Di 13.11.2007
Autor: M.Rex

Hallo

Meinst du


[mm] \bruch{|x-3|}{|2x+4|}<1? [/mm]

Dann machen wir mal die Fallunterscheidungen:

1. [mm] 2x+4>0\Rightarrow-2 2. [mm] 2x+4<0\Rightarrow-2>x [/mm]
3. [mm] x-3\ge0\Rightarrow x\ge3 [/mm]
4. [mm] x-3<0\Rightarrow [/mm] 3>x

Fall 3 schliesst natürlich Fall 1 mit ein, denn wenn [mm] x\ge3 [/mm] ist, gilt natürlich auch x>-2

Also musst du [mm] x\ge [/mm] 3 untersuchen

Fall 2 schliesst Fall 4 ein, aus x<-2 folgt natürlich auch x<3

Somit ist der zweite Fall, den du untersuchen musst: x<-2

Bleibt noch als letztes zu untersuchen:
-2<x<3

Dann bekommst du jeweils eine Lösungsintervall, in dem die Ungleichung erfüllt ist. Dieses musst du dann noch mit dem untersuchten Fall vergleichen, um die Lösungsmenge zu finden.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de