www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Betragsungl. mit drei Beträgen
Betragsungl. mit drei Beträgen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Betragsungl. mit drei Beträgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 So 04.11.2012
Autor: betina

Aufgabe
Löse die Betragsungleichung |x+1| + |2x+3|-|x-4| < 8

Hallo

hier sind ja drei Beträge, also muss ich doch 6 Fallunterscheidungen machen.

Sind diese 6 Fallunterscheidungen richtig:

Im 1. Fall sind alle drei Termen im Betrag positiv
Im 2. Fall sind die ersten zwei Terme im Betrag positiv aber der letzte Betrag negativ
Im 3. Fall ist nur der erste Betrag positiv und die anderen zwei negativ


Im 4. Fall sind alle drei Beträge negativ
Im 5. Fall sind die ersten zwei Terme negativ aber letzte Betrag positiv
Im 6. Fall ist nur der 1. Betrag negativ aber die anderen zwei positiv


Richtig?


        
Bezug
Betragsungl. mit drei Beträgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:54 So 04.11.2012
Autor: teo

Hallo,

du kannst es dir leichter machen. Wenn x+1 < 0 ist, was gilt dann z.B. für den Term x-4?
Wenn x+1 >0 ist, was gilt dann für 2x+3?

Grüße


P.s das war jetzt zu voreilig, Entschuldigung! da muss man ja trotzdem wieder 6 Fälle anschaun...

Bezug
                
Bezug
Betragsungl. mit drei Beträgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:03 So 04.11.2012
Autor: betina

Hallo teo

sorry aber wie habe ich deine Antwort zu verstehn?

So wie ich dich verstanden habe, ist das was ich geschrieben habe richtig, aber es ginge auch einfacher...

Wie muss ich dann vorgehen?

Danke



Bezug
                        
Bezug
Betragsungl. mit drei Beträgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:13 So 04.11.2012
Autor: abakus


> Hallo teo
>  
> sorry aber wie habe ich deine Antwort zu verstehn?
>  
> So wie ich dich verstanden habe, ist das was ich
> geschrieben habe richtig, aber es ginge auch einfacher...
>  
> Wie muss ich dann vorgehen?
>  
> Danke
>  

>
Hallo Betina,
die "kritischen Stellen", an denen einer der Beträge Null wird und links bzw. rechts davon der Betrag unterschiedlich aufgelöst wird, sind -1,5; -1 und 4.
Betrachte also die 4 Bereiche x<-1,5; -1,5<=x<=-1 ; -1<x<=4 und x>4 und behandle dort die Beträge entsprechend.
Bei diesem Verfahren kommst du mit 4 Fällen aus.
Gruß Abakus


Bezug
                                
Bezug
Betragsungl. mit drei Beträgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:43 So 04.11.2012
Autor: betina

Hast du oder jemand anders von euch vielleicht so ne Aufgabe mit drei Beträgen mit Lösung?



Bezug
                                        
Bezug
Betragsungl. mit drei Beträgen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 So 04.11.2012
Autor: abakus


> Hast du oder jemand anders von euch vielleicht so ne
> Aufgabe mit drei Beträgen mit Lösung?

Also eine Aufgabe habe ich schon mal, nämlich deine.
Die grafische Lösung hast du ebenfalls hier:
Alle Bereiche der Funktion, die unterhalb der waagerechten Linie y=8 liegen.
Gruß Abakus

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                                
Bezug
Betragsungl. mit drei Beträgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 So 04.11.2012
Autor: betina

Danke für die graphische Lösung. Ich versuch mal das für die rechnerische Lösung zu übertragen.

Aber eine Frage hätte ich noch:
Wenn ich drei Bedingung habe..erstmal überdenken ob ein Intervallbereich überhaupt vorhanden ist. Erst dann darf ich weiterrechnen..

Wie sieht das aber aus wenn ich folgende drei Bedingungen habe.

1. Bedingung x [mm] \ge [/mm] -1
2. Bedingung x [mm] \ge [/mm] 0
3. Bedingung x < 1

wäre das dann so richtig? x [mm] \in [/mm] [0, 1)

Oder ich erhalte die 3 Bedingungen
1. Bedingung x [mm] \ge [/mm] -1
2. Bedingung x [mm] \ge [/mm] -1,5
3. Bedingung x [mm] \ge [/mm]  4

Heisst ja zusammengefasst [4, [mm] \infty+ [/mm] ) es ist ein Intervallbereich vorhanden. Frage ist ob das Ergebnis diese 3 Bedingungen erfüllt.
Ich erhalte dann bei dem Ergebnis kleiner 0
Heisst dann die L;sungsmenge L = [-1,0) ?



Bezug
                                                        
Bezug
Betragsungl. mit drei Beträgen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 So 04.11.2012
Autor: abakus


> Danke für die graphische Lösung. Ich versuch mal das für
> die rechnerische Lösung zu übertragen.
>  
> Aber eine Frage hätte ich noch:
>  Wenn ich drei Bedingung habe..erstmal überdenken ob ein
> Intervallbereich überhaupt vorhanden ist. Erst dann darf
> ich weiterrechnen..
>  
> Wie sieht das aber aus wenn ich folgende drei Bedingungen
> habe.
>  
> 1. Bedingung x [mm]\ge[/mm] -1
>  2. Bedingung x [mm]\ge[/mm] 0
>  3. Bedingung x < 1
>  
> wäre das dann so richtig? x [mm]\in[/mm] [0, 1)

Ja.

>  
> Oder ich erhalte die 3 Bedingungen
>  1. Bedingung x [mm]\ge[/mm] -1
>  2. Bedingung x [mm]\ge[/mm] -1,5
>  3. Bedingung x [mm]\ge[/mm]  4
>  
> Heisst ja zusammengefasst [4, [mm]\infty+[/mm] )

Richtig. Und alles, was du jetzt unter dieser Annahme berechnest, kann NUR IN DIESEM INTERVALL stattfinden.

> es ist ein
> Intervallbereich vorhanden. Frage ist ob das Ergebnis diese
> 3 Bedingungen erfüllt.
>  Ich erhalte dann bei dem Ergebnis kleiner 0

Na und? Wir bewegen und gerade im Bereich der Zahlen, die größer als 4 sind. In diesem Bereich gibt es keine negativen Zahlen.

>  Heisst dann die L;sungsmenge L = [-1,0) ?

Nein.

>  
>  


Bezug
        
Bezug
Betragsungl. mit drei Beträgen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 So 04.11.2012
Autor: Leopold_Gast

Man kann die Aufgabe auch über den Zwischenwertsatz, angewandt auf die Differenzfunktion, lösen. Das Verfahren ist nicht gerade elegant, führt aber auf jeden Fall zum Ziel.


1. Schritt: Differenz der beiden Seiten bilden, Funktion festlegen

[mm]f(x) = 8 - \left| x+1 \right| - \left| 2x+3 \right| + \left| x-4 \right| \, , \ x \in \mathbb{R}[/mm]

Die gegebene Ungleichung ist äquivalent zur Ungleichung [mm]f(x)>0[/mm]. Nach dem Zwischenwertsatz kann eine solche Ungleichung nur im Innern von gewissen der Intervalle bestehen, in die [mm]\mathbb{R}[/mm] durch die Nullstellen von [mm]f[/mm] eingeteilt wird. Denn [mm]f[/mm] ist eine stetige Funktion.


2. Schritt: Kandidaten für die Nullstellen bestimmen (Casting)

Beim Auflösen eines Betrages wird der Betrag durch ein Plus- oder Minuszeichen vor der Klammer ersetzt. Da wir drei Beträge haben, gibt es dafür [mm]2^3[/mm] = 8 Möglichkeiten. Man löst die einfachen linearen Gleichungen. Natürlich ist nicht jede der Lösungen eine Nullstelle von [mm]f[/mm] (da es ja vom Wert von [mm]x[/mm] abhängt, ob das Plus- oder Minuszeichen das richtige ist). Aber keine andere Zahl der Welt kann eine Nullstelle von [mm]f[/mm] sein. Wir bekommen so also die einzig möglichen Kandidaten für Nullstellen:

[mm]8 + \left( x+1 \right) + \left( 2x+3 \right) + \left( x-4 \right) = 0 \qquad \qquad \mbox{Lösung:} \ x = -2[/mm]

[mm]8 + \left( x+1 \right) + \left( 2x+3 \right) - \left( x-4 \right) = 0 \qquad \qquad \mbox{Lösung:} \ x = -8[/mm]

[mm]8 + \left( x+1 \right) - \left( 2x+3 \right) + \left( x-4 \right) = 0 \qquad \qquad \mbox{unlösbar}[/mm]

[mm]8 + \left( x+1 \right) - \left( 2x+3 \right) - \left( x-4 \right) = 0 \qquad \qquad \mbox{Lösung:} \ x = 5[/mm]

[mm]8 - \left( x+1 \right) + \left( 2x+3 \right) + \left( x-4 \right) = 0 \qquad \qquad \mbox{Lösung:} \ x = -3[/mm]

[mm]8 - \left( x+1 \right) + \left( 2x+3 \right) - \left( x-4 \right) = 0 \qquad \qquad \mbox{unlösbar}[/mm]

[mm]8 - \left( x+1 \right) - \left( 2x+3 \right) + \left( x-4 \right) = 0 \qquad \qquad \mbox{Lösung:} \ x = 0[/mm]

[mm]8 - \left( x+1 \right) - \left( 2x+3 \right) - \left( x-4 \right) = 0 \qquad \qquad \mbox{Lösung:} \ x = 2[/mm]

Der Größe nach geordnet haben wir die folgenden Kandidaten für Nullstellen: -8,-3,-2,0,2,5


3. Schritt: Nullstellen durch Probe aussortieren (Entscheid)

[mm]f(-8) = 0 \, , \ \ f(-3) = 10 \, , \ f(-2)=12 \, , \ f(0)=8 \, , \ f(2) = 0 \, , \ f(5) = -10[/mm]

Nullstellen von [mm]f[/mm] sind also nur -8 und 2.


4. Schritt: Intervallaufteilung und Vorzeichenprobe

[mm](-\infty,-8] \cup [-8,2] \cup [2,\infty)[/mm]

Im Innern des ersten Intervalls ist [mm]f(x)<0[/mm] wegen [mm]f(-10) = -4[/mm]

Im Innern des zweiten Intervall ist [mm]f(x)>0[/mm] wegen [mm]f(0)=8[/mm]

Im Innern des dritten Intervalls ist [mm]f(x)<0[/mm] wegen [mm]f(5)=-10[/mm]


5. Schritt: Lösungsmenge der Ungleichung angeben

Genau die Zahlen des Intervalls [mm]I = (-8,2)[/mm] sind die Lösungen der Ungleichung.

Natürlich kommt man mit Nachdenken schneller zum Ziel als mit diesem sturen Verfahren, wo man unter Umständen viel zu viele kritische Werte berechnet. Aber immerhin - es ist ein Algorithmus, der funktioniert. Immer.

Bezug
                
Bezug
Betragsungl. mit drei Beträgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:11 So 04.11.2012
Autor: betina

Ein + [mm] \infty [/mm] riesiges Dankeschön an euch!!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de