www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Betragsungleichung
Betragsungleichung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Betragsungleichung: Rechnung
Status: (Frage) beantwortet Status 
Datum: 23:49 Do 15.11.2007
Autor: Salomon

Sagt mal, die Aufgabe

| x² - 4 | [mm] \le [/mm] x + 2

kann man die formal mit Vereinigungsmengen und des daraus resultierenden Vereinigungsintervalls rechnen???
Ich hab' bei dieser (ECHT trivialen) Aufgabe SO ein Brett vorm Kopf.
Ich weiß ja wie das Intervall lautet ({-2} [mm] \cup [/mm] [1 ; 3]), nur formal ist's nicht "schön" bzw. sogar falsch!

Bitte rechnet die mir einer mal formal (Fallunterscheidung) vor.
Ich weiß nicht wo ich irgendwie falsch liegen könnte!?

Danke!

        
Bezug
Betragsungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:47 Fr 16.11.2007
Autor: Psychopath

| x² - 4 | [mm]\le[/mm] x + 2

Die Fallunterscheidung ist:

I.   x² - 4  [mm]\le[/mm] x + 2          mit: [mm] x^2-4\ge0 [/mm]
II:  -(x² - 4)  [mm]\le[/mm] x + 2      mit: [mm] x^2-4<0 [/mm]

I.   x² -x- 6  [mm]\le[/mm] 0             mit: [mm] x^2-4\ge0 [/mm]
II:  -x² + 4  [mm]\le[/mm] x + 2       mit: [mm] x^2-4<0 [/mm]

I.   x² -x- 6  [mm]\le[/mm] 0             mit: [mm] x^2-4\ge0 [/mm]
II:  -x² -x + 2  [mm]\le[/mm] 0          mit: [mm] x^2-4<0 [/mm]

Jetzt die Zusatzbedingung lösen:

I.   x² -x- 6  [mm]\le[/mm] 0             mit: [mm] x^2\ge4 [/mm]
II:  -x² -x + 2  [mm]\le[/mm] 0          mit: [mm] x^2<4 [/mm]

I.   x² -x- 6  [mm]\le[/mm] 0             mit: [mm] (-\infty,-2] [/mm]  und [mm] [2,\infty) [/mm]
II:  -x² -x + 2  [mm]\le[/mm] 0          mit:(-2,2)

Jetzt die Lösungen kombinieren:

I.  L=[-2,3]   [mm] \cap [/mm]        ( [mm] (-\infty,-2] \cup [2,\infty)) [/mm]
II. [mm] L=((-\infty,-2)\cup (1,\infty)) \cap [/mm]        (-2,2)

I.   [mm] L={-2}\cup[2,3) [/mm]
II.  L=(1,2)

[mm] L=I\capII={-2}\cup(1,3) [/mm]

Bezug
                
Bezug
Betragsungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:25 Fr 16.11.2007
Autor: Salomon

Danke für die schnelle Antwort, aber:

Irgendwas stimmt bei dir nicht!

-x² - x + 2 = -(x + 2)(x - 1) [mm] \le [/mm] 0
[mm] \rightarrow [/mm] (x + 2)(x -1) [mm] \ge [/mm] 0
Ok?
Dann folgt aber für die Intervalle ohne Bedingung:
[-2 ; [mm] \infty [/mm] ) [mm] \cup [/mm] [1 ; [mm] \infty [/mm] )
Ist das korrekt?
Jetzt [mm] \cap [/mm] mit (-2 ; 2) folgt:
[-2 ; 2) [mm] \cup [/mm] [1; 2) = [mm] I_{1} [/mm]

Für das zweite Gedöns (x² - x - 6) [mm] \le [/mm] 0 ergibt sich das Intervall
[mm] I_{2} [/mm] = (- [mm] \infty [/mm] ; -2] [mm] \cup [/mm] [2 ; 3] (nicht {-2}!..., da x [mm] \le [/mm] - 2 das Intervall vorne ergibt!)

Soweit so gut. Das würde ja alles noch stimmen wenn man das Gesamtintervall aus der SCHNITTmenge beider Intervalle bilden würde - nur gilt, dass man für das Endintervall die Einzelintervalle vereinigen soll!

Was nun? Wo IST mein Fehler?

Bezug
                        
Bezug
Betragsungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Fr 16.11.2007
Autor: Psychopath


> Irgendwas stimmt bei dir nicht!
>  
> -x² - x + 2 = -(x + 2)(x - 1) [mm]\le[/mm] 0
>  [mm]\rightarrow[/mm] (x + 2)(x -1) [mm]\ge[/mm] 0
> Ok?

Nein, stimmt nicht.
Die Lösungen der Gleichung sind -2 und 1, also heißt die Linearfaktorenzerlegung:

(x+2)(x-1) und nicht  -(x+2)(x-1)

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de