www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Bew.
Bew. < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bew.: Übungsaufgabe
Status: (Frage) beantwortet Status 
Datum: 16:11 Mi 18.07.2012
Autor: Axiom96

Aufgabe
Es sei [mm] {a_n} [/mm] eine konvergente Folge mit [mm] a_n [/mm] < a für alle n. Man beweise: [mm] \limes_{n\rightarrow\infty}a_n \le [/mm] a .

Ich vermute, es lässt sich die Aufgabe als Beweis durch Widerspruch lösen. Dazu stelle ich die Annahme auf: Sei [mm] \limes_{n\rightarrow\infty}a_n [/mm] > a > [mm] a_n [/mm] . Wenn ich jetzt ein [mm] \epsilon [/mm] > 0 finde, mit: [mm] \left|a_n - \limes_{n\rightarrow\infty}a_n\right| [/mm] > [mm] \epsilon [/mm] für alle n, dann sollte das genügen. Da [mm] \limes_{n\rightarrow\infty}a_n [/mm] > [mm] a_n [/mm] ist, kann ich schreiben [mm] \left|a_n - \limes_{n\rightarrow\infty}a_n\right| [/mm] = [mm] \limes_{n\rightarrow\infty}a_n [/mm] - [mm] a_n [/mm] , dann lässt sich leichter rechnen, ohne die Betragsstriche. Jetzt schaffe ich es nur nicht, das passende [mm] \epsilon [/mm] zu finden. Oder ist schon der Ansatz falsch?

Vielen Dank im Vorraus für jede Hilfe, zumal ich schon an den nächsten Aufgabe sitze, wo ich nicht weiterkomme.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bew.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 Mi 18.07.2012
Autor: reverend

Hallo Axiom96,

Dein Ansatz ist nicht falsch, aber sehr mühsam.

Viel einfacher ist ein Widerspruchsbeweis. Nimm mal an, der Grenzwert sei größer als a, obwohl alle [mm] a_n Verwende die Definition des Folgengrenzwerts.

Grüße
reverend


Bezug
                
Bezug
Bew.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 Mi 18.07.2012
Autor: Axiom96

Genau das habe ich ja bereits angewandt, ich weiß nur nicht, wie ich weitermachen muss. Muss ich tatsächlich ein [mm] \epsilon [/mm] < $ [mm] \left|a_n - \limes_{n\rightarrow\infty}a_n\right| [/mm] $ = $ [mm] \limes_{n\rightarrow\infty}a_n [/mm] $ - $ [mm] a_n [/mm] $ suchen, und wenn ja, wie stelle ich das an?

Bezug
                        
Bezug
Bew.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 Mi 18.07.2012
Autor: Gonozal_IX

Hiho,

wir haben bisher: $g := [mm] \lim_{n\to\infty} a_n$ [/mm]
Annahme: g > a

Mach dir mal folgendes klar: Nun existiert ein [mm] $\varepsilon>0$ [/mm] so dass [mm] $g-\varepsilon [/mm] > a$

Nun weißt du aber für ausreichend große n was über die [mm] $a_n$ [/mm] in Bezug auf [mm] $g-\varepsilon$ [/mm] ?

MFG,
Gono.

Bezug
                                
Bezug
Bew.: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:09 Mi 18.07.2012
Autor: Axiom96

Für genügend große n (alle n > [mm] N_\varepsilon) [/mm] folgt: [mm] \varepsilon [/mm] > [mm] \left|a_n - \limes_{n\rightarrow\infty}a_n\right| [/mm] = [mm] \left|a_n - g\right| [/mm] = g - [mm] a_n [/mm] . Addition auf beiden Seiten von [mm] (a_n [/mm] - [mm] \varepsilon) [/mm] liefert [mm] a_n [/mm] > [mm] g-\varepsilon [/mm] > a, was im Widerspruch dazu steht, dass [mm] a_n [/mm] < a sein soll für alle n. Da die Annahme falsch ist, muss die Behauptung wahr sein.

Jetzt habe ich es verstanden. Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de