Bew. eindeutig bestimmte Zahl < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Zeigen Sie, dass für a R eine eindeutig bestimmte Zahl n Z mit n <= a < n+1 existiert. Diese wird mit [a] bezeichnet. |
Hallo ihr Mathegurus,
ich weiß bei dieser Aufgabe leider so gar nicht wie ich ansetzen soll.
Vielleicht habt ihr ja den ein oder anderen Tipp für mich.
Danke
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:23 Do 03.01.2008 | Autor: | Marcel |
Hallo,
sei also $a [mm] \in \IR$ [/mm] fest. Dann setze
[mm] $M:=M_a:=\{z \in \IZ: z \le a\}$.
[/mm]
Begründe, dass $M$ nicht leer ist und ein maximales Element hat.
Dann setze
$n:=max M$
und begründe, dass n die gewünschte Eigenschaft hat.
(Die Existenz wäre damit gesichert. Bei der Eindeutigkeit:
Nimm zu $a [mm] \in \IR$ [/mm] ein [mm] $n_1$ [/mm] und ein [mm] $n_2$, [/mm] beide in [mm] $\IZ$, [/mm] mit der geforderten Eigenschaft und zeige, dass [mm] $n_1=n_2$ [/mm] folgt.
Oder führe einen Widerspruchsbeweis:
Nimm an, es gebe zu $a [mm] \in \IR$ [/mm] dann [mm] $n_1 \not= n_2$, [/mm] beide in [mm] $\IZ$, [/mm] mit der geforderten Eigenschaft und folgere daraus einen Widerspruch...)
P.S.:
Evtl. kennst Du "nur" Aussagen über [mm] $\IN$ [/mm] bzw. gewisse Teilmengen von [mm] $\IN$, [/mm] aber da kannst Du Dir sicherlich leicht überlegen, wie man das benötigte daraus für gewisse Teilmengen von [mm] $\IZ$ [/mm] folgern kann. Es hängt ein wenig davon ab, was in Eurer Vorlesung bereits behandelt wurde bzw. in den dazugehörigen Übungen.
Stichwort:
Arbeite mit dem "Wohlordnungsprinzip für [mm] $\IN$"
[/mm]
(Jede nichtleere Teilmenge der natürlichen Zahlen hat ein minimales Element!)
Und die Aussage, die Du nun für obiges [mm] $M=M_a$ [/mm] benötigst, lautet:
Jede nicht leere und nach oben beschränkte Teilmenge der ganzen Zahlen hat ein maximales Element.
Gruß,
Marcel
|
|
|
|
|
Vielen Dank für die ausführliche Antwort. Meine einzige Frage wäre nun noch, wie ich den Beweis von n1 = n2 führen soll. Mir ist klar was du damit meinst, aber wie ich das nun begründen soll ist mir noch unschlüssig. Also ein n1 und n2 zu a R mit der geforderten Eigenschaft, dass n<= a < n+1?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:15 Fr 04.01.2008 | Autor: | Marcel |
Hallo,
also:
Seien für festes $a [mm] \in \IR$
[/mm]
[mm] $(\*)$ $n_1 \le [/mm] a < [mm] n_1+1$ [/mm] und [mm] $n_2 \le [/mm] a < [mm] n_2+1$ [/mm]
für [mm] $n_1$,$n_2$, [/mm] beide aus [mm] $\IZ$, [/mm] erfüllt. Nehmen wir [mm] $n_1 \not=n_2$ [/mm] an. O.E. können wir [mm] $n_1 [/mm] < [mm] n_2$ [/mm] annehmen (andernfalls vertausche man [mm] $n_1$ [/mm] und [mm] $n_2$ [/mm] gegeneinander). Dann gilt [mm] $n_1 \le n_2-1$.
[/mm]
Weiterhin gilt wegen [mm] $(\*)$:
[/mm]
[mm] $n_1 \le [/mm] a < [mm] n_1+1$ [/mm] und [mm] $n_2 \le [/mm] a < [mm] n_2+1$.
[/mm]
Wegen der Annahme folgt aus [mm] $n_2 \le [/mm] a$, dass auch [mm] $n_1+1 \le [/mm] a$, denn:
[mm] $n_1 \le n_2-1$ $\Rightarrow$ $n_1+1 \le n_2$ [/mm] und wegen [mm] $(\*)$ [/mm] ist [mm] $n_2 \le [/mm] a$, was [mm] $n_1+1 \le n_2 \le [/mm] a$, also [mm] $n_1+1 \le [/mm] a$ zur Folge hat.
Das impliziert wegen der Ungleichung $a < [mm] n_1+1$ [/mm] (die wegen [mm] $(\*)$ [/mm] gilt) dann aber [mm] $n_1+1 \le [/mm] a < [mm] n_1+1$, [/mm] also den Widerspruch [mm] $n_1+1 [/mm] < [mm] n_1+1$.
[/mm]
Gruß,
Marcel
|
|
|
|