www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Beweis - lineare Unabhängigk.
Beweis - lineare Unabhängigk. < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis - lineare Unabhängigk.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 So 20.11.2011
Autor: marie1992

Aufgabe
V sei ein n-dimensionaler Vektorraum über K mit der Basis [mm] {b_{1}, b_{2},...,b_{2}} [/mm] und [mm] v_{1}, v_{2},...,v_{2}\in V [/mm] seiern Vektoren mit eindeutigen Darstellungen [mm] v_{i}= \summe_{i=1}^{n}=\lambda_{ij}b_{ij}. [/mm]


Zu zeigen ist: [mm] {v_{1}, v_{2},...,v_{2}} [/mm] ist linenar unabhängig genau dann, wenn die Menge der Koordinatenvektoren


[mm] {(\lambda_{1} , \lambda_{12} ,..., \lambda_{1n} ),( \lambda_{21} ,  \lambda_{22} ,..., \lambda_{2n} ),..., ( \lambda_{k1} ,  \lambda_{k2} ,..., \lambda_{kn}) } [/mm]

linear unabhängig in [mm] K_{n} [/mm] ist.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/forum/Lineare-Unahaengigkeit-allgemein-beweisen

Hat jemand eine Idee für mich, wie man den Beweis am Besten angeht?? Kontraposition?? Wiederspruch???
Meine eigenen Ansätze halten sich bei diesem Beispiel leider in Grenzen. Da die Vektoren aus V linear unabhängig sind, kann man sie als Linearkomb. aufschreiben, die 0 ergeben muss und wobei auch alle Koeffizienten 0 sein müssen, wie man das aber verwenden kann weiß ich leider nicht.

Bitte um Hilfestellungen =) Dankeschön!!

        
Bezug
Beweis - lineare Unabhängigk.: Antwort
Status: (Antwort) fertig Status 
Datum: 10:52 Mo 21.11.2011
Autor: angela.h.b.


> V sei ein n-dimensionaler Vektorraum über K mit der Basis
> [mm]{b_{1}, b_{2},...,b_{\red{n}}}[/mm] und
> [mm]v_{1}, v_{2},...,v_{\red{n}}\in V[/mm] seiern Vektoren mit
> eindeutigen Darstellungen
> [mm]v_{i}= \summe_{\red{j}=1}^{n}\lambda_{ij}b_{\red{j}}.[/mm]
>  
>
> Zu zeigen ist: [mm]{v_{1}, v_{2},...,v_{\red{n}}}[/mm] ist linenar
> unabhängig genau dann, wenn die Menge der
> Koordinatenvektoren
>  
>
> [mm]{(\lambda_{1\red{1}} , \lambda_{12} ,..., \lambda_{1n} ),( \lambda_{21} ,  \lambda_{22} ,..., \lambda_{2n} ),..., ( \lambda_{k1} ,  \lambda_{k2} ,..., \lambda_{kn}) }[/mm]
>  
> linear unabhängig in [mm]K_{n}[/mm] ist.


Hallo,

[willkommenmr].

Ich habe mal versucht, Deinen Aufgabentext sinnstiftend zu bearbeiten.
Es wäre gut, wenn Du diesbezüglich in Zukunft sorgfältiger wärst.

> Hat jemand eine Idee für mich, wie man den Beweis am
> Besten angeht??

Zunächst mal ist es immer gut, wenn man sich genau aufschreibt, was zu zeigen ist.

Der von Dir verlangte Beweis hat zwei Richtungen:

A.
[mm] v_1, v_2,..., v_n [/mm] sind linear unabhängig ==>  
   [mm](\lambda_{1\red{1}} , \lambda_{12} ,..., \lambda_{1n} ),( \lambda_{21} ,  \lambda_{22} ,..., \lambda_{2n} ),..., ( \lambda_{k1} ,  \lambda_{k2} ,..., \lambda_{kn}) }[/mm] sind linear unabhängig

B.
[mm](\lambda_{1\red{1}} , \lambda_{12} ,..., \lambda_{1n} ),( \lambda_{21} ,  \lambda_{22} ,..., \lambda_{2n} ),..., ( \lambda_{k1} ,  \lambda_{k2} ,..., \lambda_{kn}) }[/mm] sind linear unabhängig ==>
   [mm] v_1, v_2,...,v_n [/mm] sind linear unabhängig.


zu A.

Seien [mm] k_1,...,k_n\in \IR [/mm] mit
[mm] k_1*[/mm] [mm](\lambda_{1\red{1}} , \lambda_{12} ,..., \lambda_{1n} ) + k_2*( \lambda_{21} ,  \lambda_{22} ,..., \lambda_{2n} ) + ... + k_n*( \lambda_{k1} ,  \lambda_{k2} ,..., \lambda_{kn}) }[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

=(0,0,...,0)

Hieraus mußt Du nun "irgendwie" mithilfe der Voraussetzung, daß die v_1,v_2, ...,v_n linear unahängig sind, folgern, daß k_1=...=k_n=0 gilt.
Ist Dir dies gelungen, so ist die Behauptung gezeigt.

Aus
k_1*$(\lambda_{1\red{1}} , \lambda_{12} ,..., \lambda_{1n} ) + k_2*( \lambda_{21} ,  \lambda_{22} ,..., \lambda_{2n} ) + ... + k_n*( \lambda_{k1} ,  \lambda_{k2} ,..., \lambda_{kn}) }$=(0,0,...,0)
folgt mit Zwischenschritten, welche Du Dir genau überlegen solltest

k_1\lambda_{11}+k_2\lambda_{21}+...+k_n\lambda{n1}=0
k_1\lambda_{12}+k_2\lambda_{22}+...+k_n\lambda{n2}=0
\vdots
k_1\lambda_{1n}+k_2\lambda_{2n}+...+k_n\lambda{nn}=0

Von hier aus muß man nun die Kurve kratzen zu den v_i:

es ist dann

k_1v_1+k_2v_2+...+k_nv_n=k_1$\summe_{\red{j}=1}^{n}\lambda_{1j}b_{\red{j}}+k_2$\summe_{\red{j}=1}^{n}\lambda_{2j}b_{\red{j}}+...+k_n$\summe_{\red{j}=1}^{n}\lambda_{nj}b_{\red{j}}$
=(...)*b_1+(...)*b_2+...+(...)b_n= ???

Bedenke nun, daß v_1,...,v_n lt. Voraussetzung linear unabhängig sind.
Was folgt?

Gruß v. Angela





>  Kontraposition?? Wiederspruch???
>  Meine eigenen Ansätze halten sich bei diesem Beispiel
> leider in Grenzen. Da die Vektoren aus V linear unabhängig
> sind, kann man sie als Linearkomb. aufschreiben, die 0
> ergeben muss und wobei auch alle Koeffizienten 0 sein
> müssen, wie man das aber verwenden kann weiß ich leider
> nicht.
>  
> Bitte um Hilfestellungen =) Dankeschön!!


Bezug
                
Bezug
Beweis - lineare Unabhängigk.: Dankeschön =)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:33 So 27.11.2011
Autor: marie1992

Dankeschön =) du hast mir wirklich sehr geholfen!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de