www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Beweis Binominalkoeffizienten
Beweis Binominalkoeffizienten < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Binominalkoeffizienten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:15 Mo 09.10.2006
Autor: Fabian

Aufgabe
Man bestätige für [mm] n\in\IN_{0}: [/mm]

[mm] \summe_{k=0}^{n}\vektor{m+k \\ k}=\vektor{m+n+1 \\ n};m\in\IN_{0} [/mm]

Hallo,

ich habe leider keine Ahnung, wie ich da rangehen soll. Muß ich das etwa mit vollständiger Induktion beweisen? Wenn ja, wie fange ich da denn an? Oder geht das auch anders?

Vielen Dank für eure Antworten!

Gruß Fabian



        
Bezug
Beweis Binominalkoeffizienten: Antwort
Status: (Antwort) fertig Status 
Datum: 23:20 Mo 09.10.2006
Autor: Karl_Pech

Hallo Fabian!


> Man bestätige für [mm]n\in\IN_{0}:[/mm]
>  
> [mm]\summe_{k=0}^{n}\vektor{m+k \\ k}=\vektor{m+n+1 \\ n};m\in\IN_{0}[/mm]
>  
> Hallo,
>  
> ich habe leider keine Ahnung, wie ich da rangehen soll. Muß
> ich das etwa mit vollständiger Induktion beweisen? Wenn ja,
> wie fange ich da denn an? Oder geht das auch anders?


Also ob es auch anders geht, weiß ich im Moment nicht, aber mit der Induktion geht es.


Da hier die 0 Teil der natürlichen Zahlen ist, kannst du auch dort ansetzen.


[mm]\underline{\texttt{Induktionsanfang }(n=0)}:[/mm]


[mm]\sum_{k=0}^{0}{\binom{m+k}{k}}=\binom{m}{0}=1=\binom{m+0+1}{0}\quad\checkmark[/mm]


Unter der Annahme das die Aussage gilt, machen wir dann den


[mm]\underline{\texttt{Induktionsschritt }(n\leadsto n+1):}[/mm]


[mm]\sum_{k=0}^{n+1}{\binom{m+k}{k}}=\binom{m+n+1}{n+1}+\sum_{k=0}^n{\binom{m+k}{k}} \mathop =^{\texttt{I.A.}} \binom{m+n+1}{n+1} + \binom{m+n+1}{n}[/mm]


So ... und jetzt lese dir den []Wiki-Artikel zum Pascalschen Dreieck durch. Dort ist eine Formel, die den Beweis zu einem guten Ende führen kann. :-)



Grüße
Karl
[user]





Bezug
                
Bezug
Beweis Binominalkoeffizienten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Di 10.10.2006
Autor: Fabian

Hallo Karl Pech,

danke für deine Antwort. Aber aus dem Wiki Artikel werd ich nicht schlau! Ich weiß nicht wie ich weitermachen soll?

Viele Grüße

Fabian

Bezug
                        
Bezug
Beweis Binominalkoeffizienten: Antwort
Status: (Antwort) fertig Status 
Datum: 10:37 Mi 11.10.2006
Autor: Karl_Pech

Hallo Fabian,


> danke für deine Antwort. Aber aus dem Wiki Artikel werd ich
> nicht schlau! Ich weiß nicht wie ich weitermachen soll?


Ich stelle die Formel aus dem Wiki-Artikel und dem letzten Term aus dem Beweis mal nebeneinander:


[mm]\renewcommand{\arraystretch}{2.5} \begin{array}{rl} \texttt{Term aus Beweis:} & \displaystyle\binom{\textcolor{red}{m+n+1}}{\textcolor{blue}{n+1}} + \binom{\textcolor{red}{m+n+1}}{\textcolor{green}{n}}\\ \texttt{Wiki-Formel:} & \displaystyle\binom{n}{\textcolor{blue}{k}} = \binom{\textcolor{red}{n-1}}{\textcolor{green}{k-1}} + \binom{\textcolor{red}{n-1}}{\textcolor{blue}{k}} \end{array},[/mm]


wobei [mm]n = \textcolor{red}{n-1}+1[/mm] ist.



Viele Grüße
Karl





Bezug
                                
Bezug
Beweis Binominalkoeffizienten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:07 Mi 11.10.2006
Autor: Fabian

Hallo Karl Pech [anbet]

jetzt habe ich es gerafft [lichtaufgegangen] !!!

Das hast du echt super erklärt! Nicht zuviel verraten, so dass ich noch selber überlegen musste.

Vielen Dank!

Viele Grüße

Fabian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de