Beweis Blockmatrix < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:40 Mo 28.06.2010 | Autor: | stk66 |
Aufgabe 1 | (a) Sei K ein Körper, und seien [mm] A\in M_{n}(K),C\in M_{m\times n}(K) [/mm] und [mm] D\in M_{m}(K).
[/mm]
Zeige: [mm] det\pmat{ A & 0 \\ C & D } [/mm] = [mm] det(A)\cdot [/mm] det(D). |
Aufgabe 2 | (b) Sei K ein Körper, und seien [mm] B\in M_{n}(K),C\in M_{m}(K) [/mm] und [mm] D\in M_{m\times n}(K).
[/mm]
Zeige: [mm] det\pmat{ 0 & B \\ C & D } [/mm] = [mm] (-1)^{nm}det(B)\cdot [/mm] det(C) |
Ich vermute, dass ich für den Beweis irgendwie den Laplaceschen Entwicklungssatz benutzen muss. Komme im Moment aber nicht darauf wie. Bzw. nach welcher Zeile oder Spalte ich hier entwickeln muss.
|
|
|
|
Hast du dir schon einmal ein konkretes Beispiel angeschaut? Eigentlich sind diese Aussagen recht offensichtlich.
Nimm doch einfach mal eine Matrix
[mm] \pmat{ 1 & 2&0&0\\3&4&0&0\\9&8&5&6\\7&6&7&5 } [/mm] und entwickle diese.
Der Laplaceschen Entwicklungssatz ist der richtige Ansatzpunkt. Natürlich nimmt man die Zeile (Spalte), wo man am wenigsten entwickeln muss. Oder gleich allgemein nach der ersten Zeile:
[mm] \pmat{ a & 0 \\ c & d }
[/mm]
[mm] $\vmat{ a&b&0&0\\c&d&0&0\\e&f&i&k\\g&h&l&m }=ad\vmat{ i&k\\l&m }-bc\vmat{ i&k\\l&m }=\vmat{ i&k\\l&m }\cdot(\ldots)$
[/mm]
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:22 Mo 28.06.2010 | Autor: | stk66 |
Verstehe Deine Antwort. Allerdings tue ich mir schwer daran, das ganze allgemein für grössere Matrizen zu notieren.
Es müsste ja in etwas sowas sein wie:
[mm] det\pmat{ a_{1,1} & \cdots & a_{1,n} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} & 0 & \cdots & 0 \\ c_{1,1} & \cdots & c_{1,n} & d_{1,1} & \cdots & d_{1,m} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ c_{m,1} & \cdots & c_{m,n} & d_{m,1} & \cdots & d_{m,m} }=\summe_{j=1}^{n}(-1)^{1+j}\cdot a_{1,j}\cdot |A_{i,j}|
[/mm]
,wobei [mm] A_{i,j} [/mm] die Untermatrix ist, die durch Streichen der i-ten Zeile und j-ten Spalte entsteht.
Die Summe muss dann so vereinfacht werden, dass am Ende durch Ausklammern [mm] det(A)\cdot [/mm] det(D) übrig bleibt.
|
|
|
|
|
Da gibt es einen Trick:
Versuch dich erst einmal mit
[mm] \pmat{ E & 0 \\ C & D } [/mm] und [mm] \pmat{ A & 0 \\ C & E }
[/mm]
Da bekommst du leicht die Deteminante heraus. Und dann betrachtest du einfach
[mm] \pmat{ A & 0 \\ C & D }=\pmat{ A & 0 \\ C & E }\pmat{ E & 0 \\ 0 & D }
[/mm]
E ist hier Einheitsmatrix.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:57 Mo 28.06.2010 | Autor: | stk66 |
OK, das ganze läuft also über den Multiplikationssatz.Ich muss also zeigen, dass für alle [mm] E_{r} [/mm] gilt: [mm] det\pmat{ E_{r} & 0 \\ C & D}=det(D)
[/mm]
Also per Induktion:
IA:
Sei [mm] E_{1}=(1), C=\pmat{ c_{1,1} \\ \vdots \\ c_{n-1,1}}\in M_{n-1\times 1}(K), D=(d_{ij})\in M_{m}(K).
[/mm]
Damit wird [mm] M=\pmat{ E_{1} & 0 \\ C & D}=\pmat{1 & 0 \\ (c_{j,1}) & D}=\pmat{1 & 0 & \cdots & 0 \\ c_{1,1} & d_{1,1} & \cdots & d_{1,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n-1,1} & d_{n-1,1} & \cdots & d_{n-1,n-1}}
[/mm]
und [mm] det(M)=det(m_{i,j}) [/mm] durch Entwicklung nach der 1. Zeile:
[mm] det(M)=\summe_{j=1}^{n}(-1)^{j+1}\cdot m_{1,j}\cdot [/mm] det [mm] A_{1,j}=det(D) [/mm] ,da [mm] m_{1,1}=1 [/mm] und [mm] m_{1,j}=0 [/mm] für [mm] 2\le j\le [/mm] n.
Allerdings scheitere ich jetzt am Induktionsschritt.
Meine Frage, muss ich das ganze überhaupt durch Induktion zeigen oder gehts auch anders/einfacher?
|
|
|
|
|
Dir ist schon klar, dass man auch diagonal entwickeln darf. Dann steht es ja schon da.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:21 Mo 28.06.2010 | Autor: | stk66 |
War mir nicht bekannt, nein. Kenne nur die Entwicklung nach Zeilen und Spalten.
|
|
|
|