www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Beweis Dreiersystem
Beweis Dreiersystem < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Dreiersystem: Beweis Führung
Status: (Frage) beantwortet Status 
Datum: 17:07 Sa 22.01.2005
Autor: DaMazen

So nochmal eine Frage auch hier konnte ich leider außer einer Überprüfung an Bsp nichts erreichen.

(2020...20)3 (soll Index 3 sein und für das 3ersystem stehen) bezeichnet die im Dreiersytsem aus n Ziffernblöcken "20" dargestellte Zahl.
Beweisen Sie: (2020...20)3(Index) = [mm] 3/4(9^n [/mm] - 1)

Kann mir jemand helfen?

        
Bezug
Beweis Dreiersystem: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Sa 22.01.2005
Autor: Paulus

Lieber DaMazen

Die Ziffernfolge [mm] $a_{n-1}a_{n-2}a_{n-3}...a_{1}a_{0}$ [/mm] zur Basis $b_$ stellt ja diesen Wert dar:

[mm] $\sum_{k=0}^{n-1}a_{k}b^k$ [/mm]

In deinem Beispiel ist $b=3$, die [mm] $a_k$ [/mm] mit geradem $k_$ haben den Wert Null, die anderen den Wert $2_$.

Somit erhalten wir:

[mm] $\sum_{k=0}^{n-1}2*3^{2k+1}$ [/mm]

Von nun an sind es ganz einfache, elementare Umformungen:

[mm] $\sum_{k=0}^{n-1}2*3^{2k+1}=2\sum_{k=0}^{n-1}3^{2k+1}=2\sum_{k=0}^{n-1}3*3^{2k}=6\sum_{k=0}^{n-1}3^{2k}=6\sum_{k=0}^{n-1}9^k$ [/mm]

Jetzt hast du die Summe der ersten n Glieder einer Geometrischen Reihe. Dafür gibt es doch eine Formel, oder? ;-)

Somit weiter:

$... = [mm] 6\bruch{9^n-1}{9-1}=6\bruch{9^n-1}{8}=\bruch{3}{4}(9^n-1)$ [/mm]

Mit lieben Grüssen

Paul

Bezug
        
Bezug
Beweis Dreiersystem: tip
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:15 Sa 22.01.2005
Autor: FriedrichLaher

Hallo, DaMazen,

diese Ziffernfolge ist eine Geometrischen Reihe mit dem Faktor 9 äquivalent. Die Formel für die Summe einer solchen
kennst Du?

Bezug
                
Bezug
Beweis Dreiersystem: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 So 23.01.2005
Autor: DaMazen

Ja die kenne ich, ich war nur nicht einmal auf einen Ansatz gekommen. Vielen Dank habt mir sehr geholfen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de